DOI QR코드

DOI QR Code

Human intronless disease associated genes are slowly evolving

  • Agarwal, Subhash Mohan (Center for Computational Biology and Bioinformatics, School of Information Technology, Jawaharlal Nehru University) ;
  • Srivastava, Prashant K. (Cellular and Molecular Pathology (G130), German Cancer Research Center)
  • Published : 2009.06.30

Abstract

In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower $K_{a}$ and $K_{a}/K_{s}$ while $K_{s}$ although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Keywords

References

  1. Sakharkar, M. K., Kangueane, P., Petrov, D. A., Kolaskar, A. S. and Subbiah, S. (2002) SEGE: a database on 'intron less/single exonic' genes from eukaryotes. Bioinformatics 18, 1266-1267 https://doi.org/10.1093/bioinformatics/18.9.1266
  2. Agarwal, S. M. and Gupta, J. (2005) Comparative analysis of human intronless proteins. Biochem. Biophys. Res. Commun. 331, 512-519. Erratum in: (2005) Biochem. Biophys. Res. Commun. 333, 287 https://doi.org/10.1016/j.bbrc.2005.05.103
  3. Agarwal, S. M. (2005) Evolutionary rate variation in eukaryotic lineage specific human intronless proteins. Biochem. Biophys. Res. Commun. 337, 1192-1197 https://doi.org/10.1016/j.bbrc.2005.09.172
  4. Hill, A. E. and Sorscher, E. J. (2006) The non-random distribution of intronless human genes across molecular function categories. FEBS Lett. 580, 4303-4305 https://doi.org/10.1016/j.febslet.2006.06.051
  5. Pozzoli, U., Riva, L., Menozzi, G., Cagliani, R., Comi, G. P., Bresolin, N., Giorda, R. and Sironi, M. (2004) Overrepresentation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing. Biochem. Biophys. Res. Commun. 322, 470-476 https://doi.org/10.1016/j.bbrc.2004.07.144
  6. Peltonen, L. and McKusick, V. A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. Science 291, 1224-1229 https://doi.org/10.1126/science.291.5507.1224
  7. Hamosh, A., Scott, A. F., Amberger, J., Bocchini, C., Valle, D. and McKusick, V. A. (2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic. Acids Res. 30, 52-55 https://doi.org/10.1093/nar/30.1.52
  8. Duret, L. and Mouchiroud, D. (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17, 68-74 https://doi.org/10.1093/oxfordjournals.molbev.a026239
  9. Tu, Z., Wang, L., Xu, M., Zhou, X., Chen, T. and Sun, F. (2006) Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics 7, 31 https://doi.org/10.1186/1471-2164-7-31
  10. Smith, N. G. and Eyre-Walker, A. (2003) Human disease genes: patterns and predictions. Gene 318, 169-175 https://doi.org/10.1016/S0378-1119(03)00772-8
  11. Huang, H., Winter, E. E., Wang, H., Weinstock, K. G., Xing, H., Goodstadt, L., Stenson, P. D., Cooper, D. N., Smith, D., Alba, M. M., Ponting, C. P. and Fechtel, K. (2004) Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 5, R47 https://doi.org/10.1186/gb-2004-5-7-r47
  12. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., Geer, L. Y., Helmberg, W., Kapustin, Y., Kenton, D. L., Khovayko, O., Lipman, D. J., Madden, T. L., Maglott, D. R., Ostell, J., Pruitt, K. D., Schuler, G. D., Schriml, L. M., Sequeira, E., Sherry, S. T., Sirotkin, K., Souvorov, A., Starchenko, G., Suzek, T. O., Tatusov, R., Tatusova, T. A., Wagner, L. and Yaschenko, E. (2005) Database resources of the National Center for Biotechnology Information. Nucl. Acids Res. 33, D39-45଀²ꉀĀĀ,ꑀĀ뤀덀ソᦗ⨀壊᪗⨀렀Ȁ␀␀␀Ā਀਀聁얖⨀ᾗ⨀會Ā會䄁덐郆ᦗ⨀恁얖⨀、뚲놜䡇꣇ᦗ⨀ĀĀÀ?幇죇ᦗ⨀Ȁ磋᪗⨀悗얖⨀脐돀ᢰᦗ⨀⁊<聝᪗⨀夐돐ꁝ᪗⨀䂸ᦗ⨀ꡝ᪗⨀섏덀᪗⨀쀏ᦗ⨀䃋ᦗ⨀烋ᦗ⨀䃸ᶗ⨀ https://doi.org/10.1093/nar/gki062
  13. Lopez-Bigas, N. and Ouzounis, C. A. (2004) Genomewide identification of genes likely to be involved in human genetic disease. Nucleic. Acids Res. 32, 3108-3114 https://doi.org/10.1093/nar/gkh605
  14. Cohen-Gihon, I., Lancet, D. and Yanai, I. (2005) Modular enes with metazoan-specific domains have increased tissue specificity. Trends Genet. 21, 210-213 https://doi.org/10.1016/j.tig.2005.02.008
  15. Sullivan, S., Sink, D. W., Trout, K. L., Makalowska, I., Taylor, P. M., Baxevanis, A. D. and Landsman, D. (2002) The Histone Database. Nucleic. Acids Res. 30, 341-342 https://doi.org/10.1093/nar/30.1.341
  16. Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabasi, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685-8690 https://doi.org/10.1073/pnas.0701361104
  17. Safran, M., Solomon, I., Shmueli, O., Lapidot, M., Shen-Orr, S., Adato, A., Ben-Dor, U., Esterman, N., Rosen, N., Peter, I., Olender, T., Chalifa-Caspi, V. and Lancet, D. (2002) GeneCards 2002: towards a complete, object-oriented, human gene compendium. Bioinformatics 18, 1542-1543 https://doi.org/10.1093/bioinformatics/18.11.1542
  18. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., Studholme, D. J., Yeats, C. and Eddy, S. R. (2004) The Pfam protein families database. Nucleic. Acids Res. 32, D138-141 https://doi.org/10.1093/nar/gkh121
  19. Draghici, S., Khatri, P., Martins, R. P., Ostermeier, G. C. and Krawetz, S. A. (2003) Global functional profiling of gene expression. Genomics 81, 98-104 https://doi.org/10.1016/S0888-7543(02)00021-6

Cited by

  1. Evidence-based gene models for structural and functional annotations of the oil palm genome vol.12, pp.1, 2017, https://doi.org/10.1186/s13062-017-0191-4