DOI QR코드

DOI QR Code

Branched-chain Amino Acids Reverse the Growth of Intrauterine Growth Retardation Rats in a Malnutrition Model

  • Zheng, Chuan (State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Huang, Chengfei (State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Cao, Yunhe (State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Wang, Junjun (State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Dong, Bing (State Key Laboratory of Animal Nutrition, China Agricultural University)
  • 투고 : 2009.02.23
  • 심사 : 2009.07.02
  • 발행 : 2009.11.01

초록

This experiment was conducted to determine the effect of dietary supplementation with BCAA (branched-chain amino acids: leucine, isoleucine and valine) on improving the growth of rats in a malnutritional IUGR (Intrauterine Growth Retardation) model, which was established by feeding restriction. In the experimental treatment, rats were fed purified diets supplemented with BCAA (mixed) during the whole gestation period, while arginine and alanine supplementation were set as the positive and negative control group, respectively. The results showed that, compared to the effect of alanine, BCAA reversed IUGR by increasing the fetus weights by 18.4% and placental weights by 18.0% while fetal numbers were statistically increased. Analysis of gene and protein expression revealed that BCAA treatment increased embryonic liver IGF-I expression; the uterus expressed higher levels of estrogen receptor-$\alpha$ (ER-$\alpha$) and progesterone receptor (PR), and the placenta expressed higher levels of IGF-II. Amino acid analysis of dam plasma revealed that BCAA supplementation effectively enhanced the plasma BCAA levels caused by the feed restriction. BCAA also enhanced the embryonic liver gluconeogenesis by augmenting the expression of two key enzymes, namely fructose-1,6-biphosphatase (FBP) and phosphoenolpyruvate carboxykinase (PEPCK). In conclusion, supplementation of BCAA increased litter size, embryonic weight and litter embryonic weight by improving the dam uterus and placental functions as well as increasing gluconeogenesis in the embryonic liver, which further provided energy to enhance the embryonic growth.

키워드

참고문헌

  1. Almström, H. and S. E. Sonesson. 1996. Doppler echocardiographic assessment of fetal blood flow redistribution during maternal hyperoxygenation. Ultrasound. Obstet. Gynecol. 8(4):256-261
  2. Atinmo, T., W. G. Pond and R. H. Barnes. 1974. Effect of maternal energy vs. protein restriction on growth and development of progeny in swine. J. Anim. Sci. 39:703-711
  3. Bolster, D. R., T. C. Vary, S. R. Kimball and L. S. Jefferson. 2004. Leucine regulates translation initiation in rat skeletal muscle via enhanced eIF4G phosphorylation. J. Nutr. 134(7):1704-1710
  4. Brantberg, A. and S. E. Sonesson. 1999. Central arterial hemodynamics in small-for-gestational-age fetuses before and during maternal hyperoxygenation: a doppler velocimetric study with particular attention to the aortic isthmus. Ultrasound. Obstet. Gynecol. 14(4):237-243 https://doi.org/10.1046/j.1469-0705.1999.14040237.x
  5. Brosnan, J. T. and M. E. Brosnan. 2006. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr. 136:207S-211S
  6. Const$\hat{a}$ncia, M., M. Hemberger, J. Hughes, W. Dean, A. Ferguson-Smith, R. Fundele, F. Stewart, G. Kelsey, A. Fowden, C. Sibley and W. Reik. 2002. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945-948 https://doi.org/10.1038/nature00819
  7. Daeipour, M., G. Kumar, M. C. Amaral and A. E. Nel. 1993. Recombinant IL-6 activates $p^{42}$ and $p^{44}$ mitogen-activated protein kinases in the IL-6 responsive B cell line, AF-10. J. Immunol. 150(11):4743-4753
  8. Dunshea, F. R., D. E. Bauman, E. A. Nugent, D. J. Kerton, R. H. King and I. M. Cauley. 2005. Hyperinsulinaemia, supplemental protein and branched-chain amino acids when combined can increase milk protein yield in lactating sows. Br. J. Nutr. 93:325-332 https://doi.org/10.1079/BJN20041366
  9. Escobar, J., J. W. Frank, A. Suryawan, H. V. Nguyen, S. R. Kimball, L. S. Jefferson and T. A. Davis. 2005. Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am. J. Physiol. Endocrinol. Metab. 288(5):E914-21 https://doi.org/10.1152/ajpendo.00510.2004
  10. Eremia, S. C., H. A. Boo, F. H. Bloomfield, M. H. Oliver and J. E. Harding. 2007. Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep. Endocrinology 148(6):2963-2972 https://doi.org/10.1210/en.2006-1701
  11. Finch, A. M., L. G. Yang, M. O. Nwagwu, K. R. Page, H. J. McArdle and C. J. Ashworth. 2004. Placental transport of leucine in a porcine model of low birth weight. Reproduction 128:229-235 https://doi.org/10.1530/rep.1.00193
  12. Fitzgerald, S., L. Chi and M. X. Zhu. 2001. Temporal relationships among uterine pituitary adenylate cyclase-activating polypeptide, decidual prolactin-related protein and progesterone receptor mRNAs expressions during decidualization and gestation in rats. Comp. Biochem. Phys 129:25-34
  13. George, S. S., S. Swaminathan, A. S. Kanagasabapathy and L. Seshadri. 1998. Maternal zinc indices and small babies. Natl. Med. J. India. 11(3):120-121
  14. Harper, A. E., R. H. Miller and K. P. Block. 1984. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 4:409-454 https://doi.org/10.1146/annurev.nu.04.070184.002205
  15. Holecek, M. 2002. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition 18:130-133 https://doi.org/10.1016/S0899-9007(01)00767-5
  16. Jozwik, M., C. Teng, G. Meschia and F. C. Battaglia. 1999. Contribution of branched-chain amino acids to uteroplacental ammonia production in sheep. Biol. Reprod. 61:792-796 https://doi.org/10.1095/biolreprod61.3.792
  17. Kimball, S. R. and L. S. Jefferson. 2006. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 136:227S-331S
  18. Kohli, R., C. J. Meininger, T. E. Haynes, W. Yan, J. T. Self and G. Y. Wu. 2004. Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats1. J. Nutr. 134:600-608
  19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685 https://doi.org/10.1038/227680a0
  20. Langley, S. C. and A. A. Jackson. 1994. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. 86:217-222 https://doi.org/10.1016/0300-9629(94)00177-U
  21. Mateo, R. D., G. Wu, F. W. Bazer, J. C. Park, I. Shinzato, S. W. Kim. 2007. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J. Nutr. 137:652-656
  22. Moser, S. A., M. D. Tokach, S. S. Dritz, R. D. Goodband, J. L. Nelssen and J. A. Loughmiller. 2000. The effects of branchedchain amino acids on sow and litter performance. J. Anim. Sci. 78:658-667
  23. Nair, K. S. and K. R. Short. 2005. Hormonal and signaling role of Branched-chain amino acids. J. Nutr. 135:1547S-1552S
  24. Nissen, S., R. Sharp, M. Ray, J. A. Rathmacher, D. Rice, J. C. Fuller, A. S. Connelly and N. Abumrad. 1996. Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J. Appl. Physiol. 81:2095-2104
  25. Olsen, S. F., M. L. $\varnothing$sterdal, J. D. Salvig, T. Weber, A. Tabor and N. J. Secher. 2007. Duration of pregnancy in relation to fish oil supplementation and habitual fish intake: a randomised clinical trial with fish oil. Eur. J. Clin. Nutr. 61(8):976-985 https://doi.org/10.1038/sj.ejcn.1602609
  26. Olsen, S. F., N. J. Secher, A. Tabor, T. Weber, J. J. Walker and C. Gluud. 2000. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG. 107(3):382-395 https://doi.org/10.1111/j.1471-0528.2000.tb13235.x
  27. Parimi, P. S., C. Cripe-Mamie and S. C. Kalhan. 2004. Metabolic responses to protein restriction during pregnancy in rat and translation initiation factors in the mother and fetus. Pediatr. Res. 56:423-431 https://doi.org/10.1203/01.PDR.0000136277.10365.84
  28. Pennington, S. N., J. S. Pennington, L. D. Ellington, F. M. Carver, I. A. Shibley, N. Jeansonne, S. A. Lynch, L. A. Roberson, D. S. Miles, E. P. Wormington and L. W. Means. 2001. The effect of maternal malnutrition during pregnancy in the rat on the offspring's weight, glucose uptake, glucose transporter protein levels and behaviors. Nutr. Res. 21:755-769 https://doi.org/10.1016/S0271-5317(01)00270-6
  29. Rees, W. G., S. M. Hay, V. Buchan, C. Antipatis and R. M. Palmer. 1999. The effects of maternal protein restriction on the growth of the rat fetus and its amino acid supply. Br. J. Nutr. 81:243-250 https://doi.org/10.1017/S0007114599000446
  30. Roungsipragarn, R., S. Borirug and Y. Herabutya. 1999. Plasma zinc level and intrauterine growth retardation: a Study in pregnant women in Ramathibodi Hospital. J. Med. Assoc. Thai. 82(2):178-181
  31. Suryawan, A., J. W. Hawes, R. A. Harris, Y. Shimomura, A. E. Jenkins and S. M. Hutson. 1998. A molecular model of human branched-chain amino acid metabolism. Am. J. Clin. Nutr. 68(1):72-81
  32. Wang, J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin and G. Wu. 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032
  33. Woodall, S. M., B. H. Breier, B. M. Johnston, N. S. Bassett, R. Barnard and P. D. Gluckman 1999. Administration of growth hormone or IGF-I to pregnant rats on a reduced diet throughout pregnancy does not prevent fetal intrauterine growth retardation and elevated blood pressure in adult offspring. J. Endocrinol. 163:69-77 https://doi.org/10.1677/joe.0.1630069
  34. Woodall, S. M., B. H. Breier, B. M. Johnston and P. D. Gluckman. 1996. A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotropic axis and postnatal growth. J. Endocrinol. 150:231-242 https://doi.org/10.1677/joe.0.1500231
  35. Wu, G., F. W. Bazer, J. M. Wallace and T. E. Spencer. 2006. Intrauterine growth retardation: implication for the animal sciences. J. Anim. Sci. 84:2316-2337 https://doi.org/10.2527/jas.2006-156
  36. Xiao, X. M. and L. P. Li. 2005. L-Arginine treatment for asymmetric fetal growth restriction. Int. J. Gynecol. Obstet. 88: 15-18 https://doi.org/10.1016/j.ijgo.2004.09.017
  37. Zeng, X., F. Wang, X. Fan, W. Yang, B. Zhou, P. Li, Y. Yin, G. Wu and J. Wang. 2008. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J. Nutr. 138:1421-1425
  38. Zhou, X., D. F. Li, J. D. Yin, J. J. Ni, B. Dong, J. X. Zhang and M. Du. 2007. CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle. J. Lipid Res. 48:1701-1170 https://doi.org/10.1194/jlr.M600525-JLR200

피인용 문헌

  1. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0127465
  2. 母猪营养状态对仔猪初生重窝内变异的影响 vol.16, pp.6, 2015, https://doi.org/10.1631/jzus.B1500010
  3. Nutritional support for low birth weight infants: insights from animal studies vol.117, pp.10, 2017, https://doi.org/10.1017/S000711451700126X
  4. Inhibition of placental mTOR signaling provides a link between placental malaria and reduced birthweight vol.15, pp.1, 2017, https://doi.org/10.1186/s12916-016-0759-3
  5. Different Effects of Maternal Low-Isoflavone Soy Protein and Genistein Consumption on Hepatic Lipid Metabolism of 21-Day-Old Male Rat Offspring vol.9, pp.9, 2017, https://doi.org/10.3390/nu9091039
  6. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes vol.30, pp.8, 2018, https://doi.org/10.1071/RD17164