Characteristic of Oxidation Reaction of Lanthanide Chlorides in Oxygen-Eutectic Salt Bubble Column

산소-공융염 기포탑에서 희토류염화물의 산화반응 특성

  • Cho, Yung-Zun (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute) ;
  • Yang, Hee-Chul (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute) ;
  • Lee, Han-Soo (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute) ;
  • Kim, In-Tae (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute)
  • 조용준 (한국원자력연구원 핵연료주기기술개발본부) ;
  • 양희철 (한국원자력연구원 핵연료주기기술개발본부) ;
  • 이한수 (한국원자력연구원 핵연료주기기술개발본부) ;
  • 김인태 (한국원자력연구원 핵연료주기기술개발본부)
  • Received : 2009.04.27
  • Accepted : 2009.06.20
  • Published : 2009.08.31

Abstract

Characteristics of oxidation reaction of four lanthanide chlorides(Ce, Nd, Pr and $EuCl_3$) in a oxygen-eutectic(LiCl-KCl) salt bubble column was investigated. From the results obtained from the thermochemical calculations by HSC chemistry software, the most stable lanthanide compounds in the oxygen-used rare earth chlorides system were oxychlorides(EuOCl, NdOCl, PrOCl) and oxides($CeO_2$, $PrO_2$), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides for Eu, Nd and Pr and oxides for Ce and Pr were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes : small cubic(oxide) and large tetragonal (oxychloride) structures. The conversion efficiencies of the lanthanide elements to their molten salt-insoluble precipitates(or compound) were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of $650^{\circ}C$ of the molten salt temperature and 420 min of the sparging time, the conversion efficiencies were over 99% for all the investigated lanthanide chlorides.

산소-공융염(LiCl-KCl) 기포탑에서 4종의 희토류염화물($Ce/Nd/Pr/EuCl_3$)의 산화반응 특성에 대한 연구를 수행하였다. HSC Chemistry software를 이용한 모델링 결과 산소 및 희토류염화물이 존재하는 계에서 가장 안정된 화합물은 옥시염화물(EuOCl, NdOCl, PrOCl)과 산화물($CeO_2$, $PrO_2$)이었으며, 이러한 결과는 옥시염화물 및 산화물이 형성되는 반응의 Gibbs 자유에너지 경향성과도 일치하였다. 실험결과 공융염 내에서 산소와 희토류염화물과의 반응으로 산소분산 시간 및 공융염 온도와 상관없이 Eu, Nd, Pr은 옥시염화물로, Ce, Pr은 산화물형태의 침전물로 형성되었으며, 이러한 결과는 열역학적 데이터를 이용한 모델링 결과와 일치하였다. 4종의 복합희토류 침전물은 등방형태와 정방형태의 침전물로 구분되었는데 주사전자현미경(SEM-EDS) 분석결과 등방구조(cubic structure) 형태의 침전물은 산화물이었고, 정방형 구조(tetragonal structure)의 침전물은 옥시염화물이었다. 실험에 사용된 4종의 희토류염화물의 공융염에 불용성인 침전물로의 전환효율은 온도 및 분산시간이 증가하면 증가하였으며, Ce가 가장 빠른 반응특성을 나타내었다. $650^{\circ}C$의 공융염 온도 및 420분의 산소분산시간 조건에서 4종의 희토류염화물의 산화효율은 모두 99% 이상이었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. Kang, Y., Cho, Y. J., Woo, K. J., Kim, K. I. and Kim, S. D., "Bubble Properties and Pressure Fluctuations in Pressurized Bubble Column," Chem. Eng. Sci., 55, 411-419(2000) https://doi.org/10.1016/S0009-2509(99)00336-X
  2. Woo, K. J., Cho, Y. J., Kim, K. I., Kang, Y. and Kim, S. D., 'Chaos Analysis of Gas-Liquid Flow and Mass Transfer Charateristics in Pressurized Bubble Column,' HWAHAK KONGHAK, 36, 937-944(1998)
  3. Cho,Y. J., Yang, H. C., Eun, H. C., You, J. H. and Kim, J. H., 'Gas Holdup and Gas-Liquid Flow Characteristics in a Molten Salt Oxidation Reactor,' HWAHAK KONGHAK, 41, 643-638(2003)
  4. Inoue, T. and Koch, L., 'Development of Pyroprocessing and Its Future Direction,' Nucl. Technol., 40, 183-190(2008) https://doi.org/10.5516/NET.2008.40.3.183
  5. Ackerman, J. P., Johnson, T. R., Chow, L. S. H., Carls, E. L., Hannum, W. H. and Laider, J. J., "Treatment of Wastes in the IFR Fuel Cycle," Prog. Nucl. Energy, 31, 141-154(1997) https://doi.org/10.1016/0149-1970(96)00008-X
  6. Hayashi, H. and Minato, K., "Stability of Lanthanide oxides in LiCl-KCl Eutectic Melts," J. Phys. Chem. Solids, 66, 422-426(2005) https://doi.org/10.1016/j.jpcs.2004.06.054
  7. Griffiths, T. R., Volkovich, V. A., Yakimov, S. M., May, I., Sharrad, C. A. and Charnock, J. M., "Reprocessing Spent Nuclear Fuel Using Molten Carbonate and Subsequent Precipitation of Rare Earth Fission Products Using Phosphate," J. Alloy Compd., 418, 116-121(2006) https://doi.org/10.1016/j.jallcom.2005.10.060
  8. Katayama, Y., Hagiwara, R. and Ito, Y., "Precipitation of Rare Earth Compounds in LiCl-KCl Eutectic," J. Electrochem. Soc., 142, 2174-2178(1995) https://doi.org/10.1149/1.2044271
  9. Cho, Y. J., Yang, H. C., Eun, H. C., Kim, E. H. and Kim, J. H., 'Oxidation of Lanthanum chloride in a LiCl-KCl Eutectic Molten Salt Using the Oxygen Gas Sparging Method,' J. Ind. Eng. Chem., 11, 707-711(2005)
  10. Roine, A., Outokumpu HSC Chemistry for windows, Pori, Finland, 2002
  11. Inorganic Crystal Structure Database : http://icsd.kisti.re.kr
  12. Holsa, J., Lahtinen, M., Lastusaari, Valkonen, J. and Viljanen, J., "Stability of Rare-Earth Oxychloride Phase : Bond Valence Study," J. Solid State Chem., 165, 48-55(2002) https://doi.org/10.1006/jssc.2001.9491
  13. Hussein, G. A. M., "Rare Earth Metal Oxides : Formation, Characterization and Catalytic Activity Thermoanalytical and Applied Pyrosis Review," J. Anal. Appl. Pyrolysis, 37, 111-149(1996) https://doi.org/10.1016/0165-2370(96)00941-2
  14. Ozawa, M., Onoe, R. and Kato, H., 'Formation and Decomposition of Some Rare Earth(RE=La, Ce, Pr) Hydroxides and Oxides by Homogeneous Precipitation, ' J. Alloys Compd., 408-412, 556-559(2006) https://doi.org/10.1016/j.jallcom.2004.12.073
  15. Braunstein, J., Manabtov, G. and Smith, G. P., Advances in Molten Salt Chemistry, vol. 2, Plenum, New York(1973)