DOI QR코드

DOI QR Code

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃)

고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동

  • 박양순 (한국원자력연구원, 원자력화학연구부) ;
  • 한선호 (한국원자력연구원, 원자력화학연구부) ;
  • 송규석 (한국원자력연구원, 원자력화학연구부)
  • Received : 2009.09.18
  • Accepted : 2009.11.26
  • Published : 2009.12.25

Abstract

For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.

온도에 따른 티타늄금속의 산화거동을 조사하기 위하여 금속시편을 각각의 온도($300{\sim}1000^{\circ}C$)에서 2시간 동안 가열한 후, 생성된 산화시편의 표면에 대하여 X-선 회절(XRD)분석, 주사전자현미경 (SEM)/energy dispersive spectroscopy (EDS) 분석과 감쇠된 전반사(ATR) Fourier 변환 적외선(FT-IR) 분광 분석을 수행하였다. $300^{\circ}C$에서 대기 중의 산소가 티타늄 금속(hexagonal) 표면층으로 확산되어 적외선 흡수띠가 검출되었으며 온도가 높아짐에 따라 확산되는 산소 양이 증가하여 적외선 흡수띠와 X-선 회절 피크의 이동(shift) 현상이 나타났고 $700^{\circ}C$에서 XRD에 의해 $Ti_3O$ (hexagonal)의 생성이 확인되었다. 티타늄 금속 표면에 $TiO_2$ (rutile, tetragonal) 산화층이 생성되기 시작한 온도는 $600^{\circ}C$ 이었으며 이때 두께가 $1{\mu}m$ 이하 수준이었으나 $700^{\circ}C$에서는 약 $2{\mu}m$로 두꺼워졌고 $1000^{\circ}C$에서는 약 $110{\mu}m$ 두께에 달했다. 또한 $900^{\circ}C$ 이상의 온도에서 $TiO_2$ (rutile) 산화층 표면은 (110) 면의 방향으로 결정이 성장하였다.

Keywords

References

  1. Z. G. Wang, X. T. Zu, J. Lian, X. Q. Huang, L. Wang, Y. Z. Liu and L. M. Wang, J. Alloy. Comp., 384, 93-97(2004) https://doi.org/10.1016/j.jallcom.2004.04.084
  2. T. K. Kim, B. S. Choi, Y. H. Jeong, D. J. Lee and M. H. Chang, J. Nucl. Mater., 301, 81-89(2002) https://doi.org/10.1016/S0022-3115(02)00710-9
  3. Z. Xiaotao, W. Zhiguo, F. Xiangdong, A. Yongzhong, L. Libin, H. Xingquan and L. Yanling, Surf. Coat. Technol., 140, 161-165(2001) https://doi.org/10.1016/S0257-8972(01)01031-3
  4. Z. Xiaotao, F. Xiangdong, W. Zhiguo, Z. Guangting, L. Libin, L. Yanling and H. Xingquan, Surf. Coat. Technol., 148, 216-220(2001) https://doi.org/10.1016/S0257-8972(01)01358-5
  5. E. Rolinski, G. Sharp, D. F. Cowgill and D. J. Peterman, J. Nucl. Mater., 252, 200-208(1998) https://doi.org/10.1016/S0022-3115(97)00325-5
  6. J. C. Williams, Mat. Sci. Eng., A263, 107-111(1999)
  7. H. Guleryuz and H. Cimenoglu,Biomaterials, 25, 3325-3333(2004) https://doi.org/10.1016/j.biomaterials.2003.10.009
  8. H. Ahn, D. Lee, K. M. Lee, K. Lee, D. Baek and S. W. Park, Surface & Coatings Technology, 202, 5784-5789(2008) https://doi.org/10.1016/j.surfcoat.2008.06.074
  9. R. Padma, K. Ramkumar and M. Satyam, J. Mat. Sci., 23, 1591-1597(1988) https://doi.org/10.1007/BF01115696
  10. Y. S. Park, Y. K. Ha, S. H. Han, K. Y. Jee and W. H. Kim, J. Nucl. Mater., 372, 59-65(2008) https://doi.org/10.1016/j.jnucmat.2007.02.006
  11. S. Van Gils, P. Mast, E. Stijns and H. Terryn, Surf. Coat. Technol., 185, 303-310(2004) https://doi.org/10.1016/j.surfcoat.2004.01.021
  12. C. C. Ting, S. Y. Chen and D. M. Liu, Thin Solid Films, 402, 290-295(2002) https://doi.org/10.1016/S0040-6090(01)01675-3