DOI QR코드

DOI QR Code

Lipoxygenase Inhibitors Suppressed Carrageenan-Induced Fos-Expression and Inflammatory Pain Responses in the Rat

  • Yoo, Sungjae (Korea University Graduate School of Medicine) ;
  • Han, Shanshu (Korea University Graduate School of Medicine) ;
  • Park, Young Shin (Seoul National University College of Pharmacy) ;
  • Lee, Jang-Hern (Department of Veterinary Physiology, College of Veterinary Medicine and Brain Korea 21 Program for Veterinary Science, Seoul National University) ;
  • Oh, Uhtaek (Seoul National University College of Pharmacy) ;
  • Hwang, Sun Wook (Korea University Graduate School of Medicine)
  • 투고 : 2008.12.17
  • 심사 : 2009.03.04
  • 발행 : 2009.04.30

초록

Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreatment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, indicating that the LO pathway is a possible target for modulating inflammatory pain.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Education, Science and Technology

참고문헌

  1. Aley, K.O., and Levine, J.D. (2003). Contribution of 5- and 12-lipoxygenase products to mechanical hyperalgesia induced by PGE2 and epinephrine in the rat. Exp. Brain. Res. 148, 482-487 https://doi.org/10.1007/s00221-002-1323-2
  2. Amann, R., Schuligoi, R., Lanz, I., and Peskar, B.A. (1996). Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat. Eur. J. Pharmacol. 306, 89-91 https://doi.org/10.1016/0014-2999(96)00255-5
  3. Bullitt, E. (1990). Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 296, 517-530 https://doi.org/10.1002/cne.902960402
  4. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824 https://doi.org/10.1038/39807
  5. Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306-313 https://doi.org/10.1126/science.288.5464.306
  6. Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I., Chao, M.V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957-962 https://doi.org/10.1038/35082088
  7. Coggeshall, R.E. (2005). Fos, nociception and the dorsal horn. Prog. Neurobiol. 77, 299-352 https://doi.org/10.1016/j.pneurobio.2005.11.002
  8. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T , Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., et al. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183-187 https://doi.org/10.1038/35012076
  9. Ferreira, J., da Silva, G.L., and Calixto, J.B. (2004). Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787-794 https://doi.org/10.1038/sj.bjp.0705546
  10. Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875 https://doi.org/10.1126/science.294.5548.1871
  11. Harris, J.A. (1998). Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1-8 https://doi.org/10.1016/S0361-9230(97)00277-3
  12. Honore, P., Buritova, J., and Besson, J.M. (1995). Carrageeninevoked c-Fos expression in rat lumbar spinal cord: the effects of indomethacin. Eur. J. Pharmacol. 272, 249-259 https://doi.org/10.1016/0014-2999(94)00656-R
  13. Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, C.J., et al. (2002). An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400-8405 https://doi.org/10.1073/pnas.122196999
  14. Hunt, S.P., Pini, A., and Evan, G.. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632-634 https://doi.org/10.1038/328632a0
  15. Hwang, S.W., Cho, H., Kwak, J., Lee, S.Y., Kang, C.J., Jung, J., Cho, S., Min, K.H., Suh, Y.G., Kim, D., et al. (2000). Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97, 6155-6160 https://doi.org/10.1073/pnas.97.11.6155
  16. Jain, N.K., Kulkarni, S.K., and Singh, A. (2001). Role of cysteinyl leukotrienes in nociceptive and inflammatory conditions in experimental animals. Eur. J. Pharmacol. 423, 85-92 https://doi.org/10.1016/S0014-2999(01)01083-4
  17. Jhaveri, M.D., Elmes, S.J., Kendall, D.A., and Chapman, V. (2005). Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naive, carrageenan-inflamed and neuropathic rats. Eur. J. Neurosci. 22, 361-370 https://doi.org/10.1111/j.1460-9568.2005.04227.x
  18. Kwak, J.Y., Jung, J.Y., Hwang, S.W., Lee, W.T., and Oh, U. (1998). A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance. Neuroscience 86, 619-626 https://doi.org/10.1016/S0306-4522(98)00012-8
  19. Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., Zhang, D.S., Woolf, C.J., and Corey, D.P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277-289 https://doi.org/10.1016/j.neuron.2006.03.042
  20. Levine, J.D., Lau, W., Kwait, G., and Goetzl, E.J. (1984). leukotriene B4 produces hyperalgesia that is dependent on polymorphonuclear leukocytes. Science 225, 743-744 https://doi.org/10.1126/science.6087456
  21. Levine, J.D., Lam, D., Taiwo, Y.O., Donatoni, P., and Goetzl, E.J. (1986). Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc. Nalt. Acad. Sci. USA 83, 5331-5334 https://doi.org/10.1073/pnas.83.14.5331
  22. Martin, H.A., Basbaum, A.I., Kwait, G.C., Goetzl, E.J., and Levine, J.D. (1987). Leukotriene and prostaglandin sensitization of cutaneous high threshold C and A-delta mechanoreceptors in the hairy skin of the rat hindlimbs. Neuroscience 22, 651-659 https://doi.org/10.1016/0306-4522(87)90360-5
  23. Martin, H.A., Basbaum, A.I., Goetzl, E.J., and Levine, J.D. (1988). Leukotriene B4 decreases the mechanical thresholds of C and A-delta mechanoreceptors in the hairy skin of the rat. J. Neurophysiol. Neurosci. 60, 438-445
  24. Menetrey, D., Gannon, A., Levine, J.D., and Basbaum, A.I. (1989). Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J. Comp. Neurol. 285, 177-195 https://doi.org/10.1002/cne.902850203
  25. Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, A.N., Spencer, K.S., Andahazy, M., Story, G.M., and Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468-1472 https://doi.org/10.1126/science.1108609
  26. Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S., and Tominaga, M. (2005). Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1, 3 https://doi.org/10.1186/1744-8069-1-3
  27. Na, H.S., Choi, S., Kim, J., Park, J., and Shin, H.S. (2008). Attenuated neuropathic pain in Cav3.1 null mice. Mol. Cells 25, 242-246
  28. Peskar, B.M., Trautmann, M., Nowak, P., and Perskar, B.A. (1991). Release of 15-hydroxy-5, 8,11,13-eicosatetraenoic acid and cysteinyl-leukotrienes in carrageenan-induced inflammation: effect of nonsteroidal anti-inflammatory drugs. Agents Actions 33, 240-246 https://doi.org/10.1007/BF01986569
  29. Petrus, M., Peier, A.M., Bandell, M., Hwang, S.W., Huynh, T., Olney, N., Jegla, T., and Patapoutian, A. (2007). A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 https://doi.org/10.1186/1744-8069-3-40
  30. Pomonis, J.D., Harrison, J.E., Mark, L., Bristol, D.R., Valenzano, K.J., and Walker, K. (2003). N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 306, 387-393 https://doi.org/10.1124/jpet.102.046268
  31. Samad, T.A., Sapirstein, A., and Woolf, C.J. (2002). Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol. Med. 8, 390-396 https://doi.org/10.1016/S1471-4914(02)02383-3
  32. Shim, W.S., Tak, M.H., Lee, M.H., Kim, M., Kim, M., Koo, J.Y., Lee, C.H., Kim, M., and Oh, U. (2007). TRPV1 mediates histamineinduced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331-2337 https://doi.org/10.1523/JNEUROSCI.4643-06.2007
  33. Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., et al. (2002). Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 99, 10150-10155 https://doi.org/10.1073/pnas.152002699
  34. Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2004). Effect of zileuton in radicular pain induced by herniated nucleus pulposus in rats. Inflammopharmacology 12, 189-195 https://doi.org/10.1163/1568560041352293
  35. Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2005). Differential effect of zileuton, a 5-lipoxygenase inhibitor, against nociceptive paradigms in mice and rats. Pharmacol. Biochem. Behav. 81, 433-439 https://doi.org/10.1016/j.pbb.2005.03.015
  36. Szabo, A., Helyes, Z., Sandor, K., Bite, A., Pinter, E., Nemeth, J., Banvolgyi, A., Bolcskei, K., Elekes, K., and Szolcsanyi, J. (2005). Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: In vivo study using gene-deficient mice. J. Pharmacol. Exp. Ther. 314, 111-119 https://doi.org/10.1124/jpet.104.082487
  37. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21, 531-543 https://doi.org/10.1016/S0896-6273(00)80564-4
  38. Tonussi, C.R., and Ferreira, S.H. (1999). Tumor necrosis factoralpha mediates carrageenan-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joint. Pain 82, 81-87 https://doi.org/10.1016/S0304-3959(99)00035-4
  39. Uchida, K. (2008). A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. Mol. Cells 25, 347-351
  40. Vane, J., and Botting, R. (1987). Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1, 89-96 https://doi.org/10.1096/fasebj.1.2.3111928
  41. Vane, J.R., Bakhle, Y.S., and Botting, R.M. (1998). Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120 https://doi.org/10.1146/annurev.pharmtox.38.1.97
  42. Walker, K.M., Urban, L., Medhurst, S.J., Patel, S., Panesar, M., Fox, A.J., and McIntyre, P. (2003). The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 304, 56-62 https://doi.org/10.1124/jpet.102.042010
  43. Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E.D. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452-457 https://doi.org/10.1038/22761

피인용 문헌

  1. Farnesyl Pyrophosphate Is a Novel Pain-producing Molecule via Specific Activation of TRPV3 vol.285, pp.25, 2009, https://doi.org/10.1074/jbc.m109.087742
  2. Endogenous Lipid-derived Ligands for Sensory TRP Ion Channels and Their Pain Modulation vol.33, pp.10, 2010, https://doi.org/10.1007/s12272-010-1004-9
  3. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception : Resolvin D1 inhibits sensory TRPs vol.161, pp.3, 2009, https://doi.org/10.1111/j.1476-5381.2010.00909.x
  4. NMDA Receptor, PKC and ERK Mediate Fos Expression Induced by the Activation of Group I Metabotropic Glutamate Receptors in the Spinal Trigeminal Subnucleus Oralis vol.30, pp.5, 2009, https://doi.org/10.1007/s10059-010-0140-x
  5. Effects of transient receptor potential channel blockers on pacemaker activity in interstitial cells of Cajal from mouse small intestine vol.32, pp.2, 2009, https://doi.org/10.1007/s10059-011-1019-1
  6. Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels vol.152, pp.5, 2009, https://doi.org/10.1016/j.pain.2011.01.044
  7. Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors vol.92, pp.4, 2009, https://doi.org/10.1152/physrev.00048.2010
  8. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors vol.109, pp.17, 2009, https://doi.org/10.1073/pnas.1110460109
  9. Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia vol.27, pp.5, 2009, https://doi.org/10.1096/fj.12-217414
  10. Resolvins: Endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives vol.11, pp.6, 2009, https://doi.org/10.2174/1570159x11311060009
  11. Sensory TRP Channel Interactions with Endogenous Lipids and Their Biological Outcomes vol.19, pp.4, 2014, https://doi.org/10.3390/molecules19044708
  12. Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation? vol.15, pp.9, 2009, https://doi.org/10.3390/ijms150916430
  13. Natural polymers for the microencapsulation of cells vol.11, pp.100, 2009, https://doi.org/10.1098/rsif.2014.0817
  14. Synthetic and Natural Inhibitors of Phospholipases A2: Their Importance for Understanding and Treatment of Neurological Disorders vol.6, pp.6, 2009, https://doi.org/10.1021/acschemneuro.5b00073
  15. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/7801543
  16. TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain vol.56, pp.1, 2019, https://doi.org/10.1007/s12035-018-1093-x
  17. AK106-001616, a Potent and Selective Inhibitor of Cytosolic Phospholipase A2: In Vivo Efficacy for Inflammation, Neuropathic Pain, and Pulmonary Fibrosis vol.369, pp.3, 2019, https://doi.org/10.1124/jpet.118.255034