과제정보
연구 과제 주관 기관 : Ministry of Education, Science and Technology
참고문헌
- Aley, K.O., and Levine, J.D. (2003). Contribution of 5- and 12-lipoxygenase products to mechanical hyperalgesia induced by PGE2 and epinephrine in the rat. Exp. Brain. Res. 148, 482-487 https://doi.org/10.1007/s00221-002-1323-2
- Amann, R., Schuligoi, R., Lanz, I., and Peskar, B.A. (1996). Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat. Eur. J. Pharmacol. 306, 89-91 https://doi.org/10.1016/0014-2999(96)00255-5
- Bullitt, E. (1990). Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J. Comp. Neurol. 296, 517-530 https://doi.org/10.1002/cne.902960402
- Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824 https://doi.org/10.1038/39807
- Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306-313 https://doi.org/10.1126/science.288.5464.306
- Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I., Chao, M.V., and Julius, D. (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957-962 https://doi.org/10.1038/35082088
- Coggeshall, R.E. (2005). Fos, nociception and the dorsal horn. Prog. Neurobiol. 77, 299-352 https://doi.org/10.1016/j.pneurobio.2005.11.002
- Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T , Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., et al. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183-187 https://doi.org/10.1038/35012076
- Ferreira, J., da Silva, G.L., and Calixto, J.B. (2004). Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787-794 https://doi.org/10.1038/sj.bjp.0705546
- Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875 https://doi.org/10.1126/science.294.5548.1871
- Harris, J.A. (1998). Using c-fos as a neural marker of pain. Brain Res. Bull. 45, 1-8 https://doi.org/10.1016/S0361-9230(97)00277-3
- Honore, P., Buritova, J., and Besson, J.M. (1995). Carrageeninevoked c-Fos expression in rat lumbar spinal cord: the effects of indomethacin. Eur. J. Pharmacol. 272, 249-259 https://doi.org/10.1016/0014-2999(94)00656-R
- Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T.J., Krey, J.F., Chu, C.J., et al. (2002). An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400-8405 https://doi.org/10.1073/pnas.122196999
- Hunt, S.P., Pini, A., and Evan, G.. (1987). Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632-634 https://doi.org/10.1038/328632a0
- Hwang, S.W., Cho, H., Kwak, J., Lee, S.Y., Kang, C.J., Jung, J., Cho, S., Min, K.H., Suh, Y.G., Kim, D., et al. (2000). Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97, 6155-6160 https://doi.org/10.1073/pnas.97.11.6155
- Jain, N.K., Kulkarni, S.K., and Singh, A. (2001). Role of cysteinyl leukotrienes in nociceptive and inflammatory conditions in experimental animals. Eur. J. Pharmacol. 423, 85-92 https://doi.org/10.1016/S0014-2999(01)01083-4
- Jhaveri, M.D., Elmes, S.J., Kendall, D.A., and Chapman, V. (2005). Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naive, carrageenan-inflamed and neuropathic rats. Eur. J. Neurosci. 22, 361-370 https://doi.org/10.1111/j.1460-9568.2005.04227.x
- Kwak, J.Y., Jung, J.Y., Hwang, S.W., Lee, W.T., and Oh, U. (1998). A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance. Neuroscience 86, 619-626 https://doi.org/10.1016/S0306-4522(98)00012-8
- Kwan, K.Y., Allchorne, A.J., Vollrath, M.A., Christensen, A.P., Zhang, D.S., Woolf, C.J., and Corey, D.P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277-289 https://doi.org/10.1016/j.neuron.2006.03.042
- Levine, J.D., Lau, W., Kwait, G., and Goetzl, E.J. (1984). leukotriene B4 produces hyperalgesia that is dependent on polymorphonuclear leukocytes. Science 225, 743-744 https://doi.org/10.1126/science.6087456
- Levine, J.D., Lam, D., Taiwo, Y.O., Donatoni, P., and Goetzl, E.J. (1986). Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc. Nalt. Acad. Sci. USA 83, 5331-5334 https://doi.org/10.1073/pnas.83.14.5331
- Martin, H.A., Basbaum, A.I., Kwait, G.C., Goetzl, E.J., and Levine, J.D. (1987). Leukotriene and prostaglandin sensitization of cutaneous high threshold C and A-delta mechanoreceptors in the hairy skin of the rat hindlimbs. Neuroscience 22, 651-659 https://doi.org/10.1016/0306-4522(87)90360-5
- Martin, H.A., Basbaum, A.I., Goetzl, E.J., and Levine, J.D. (1988). Leukotriene B4 decreases the mechanical thresholds of C and A-delta mechanoreceptors in the hairy skin of the rat. J. Neurophysiol. Neurosci. 60, 438-445
- Menetrey, D., Gannon, A., Levine, J.D., and Basbaum, A.I. (1989). Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J. Comp. Neurol. 285, 177-195 https://doi.org/10.1002/cne.902850203
- Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, A.N., Spencer, K.S., Andahazy, M., Story, G.M., and Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468-1472 https://doi.org/10.1126/science.1108609
- Moriyama, T., Higashi, T., Togashi, K., Iida, T., Segi, E., Sugimoto, Y., Tominaga, T., Narumiya, S., and Tominaga, M. (2005). Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1, 3 https://doi.org/10.1186/1744-8069-1-3
- Na, H.S., Choi, S., Kim, J., Park, J., and Shin, H.S. (2008). Attenuated neuropathic pain in Cav3.1 null mice. Mol. Cells 25, 242-246
- Peskar, B.M., Trautmann, M., Nowak, P., and Perskar, B.A. (1991). Release of 15-hydroxy-5, 8,11,13-eicosatetraenoic acid and cysteinyl-leukotrienes in carrageenan-induced inflammation: effect of nonsteroidal anti-inflammatory drugs. Agents Actions 33, 240-246 https://doi.org/10.1007/BF01986569
- Petrus, M., Peier, A.M., Bandell, M., Hwang, S.W., Huynh, T., Olney, N., Jegla, T., and Patapoutian, A. (2007). A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 https://doi.org/10.1186/1744-8069-3-40
- Pomonis, J.D., Harrison, J.E., Mark, L., Bristol, D.R., Valenzano, K.J., and Walker, K. (2003). N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 306, 387-393 https://doi.org/10.1124/jpet.102.046268
- Samad, T.A., Sapirstein, A., and Woolf, C.J. (2002). Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol. Med. 8, 390-396 https://doi.org/10.1016/S1471-4914(02)02383-3
- Shim, W.S., Tak, M.H., Lee, M.H., Kim, M., Kim, M., Koo, J.Y., Lee, C.H., Kim, M., and Oh, U. (2007). TRPV1 mediates histamineinduced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331-2337 https://doi.org/10.1523/JNEUROSCI.4643-06.2007
- Shin, J., Cho, H., Hwang, S.W., Jung, J., Shin, C.Y., Lee, S.Y., Kim, S.H., Lee, M.G., Choi, Y.H., Kim, J., et al. (2002). Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 99, 10150-10155 https://doi.org/10.1073/pnas.152002699
- Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2004). Effect of zileuton in radicular pain induced by herniated nucleus pulposus in rats. Inflammopharmacology 12, 189-195 https://doi.org/10.1163/1568560041352293
- Singh, V.P., Patil, C.S., and Kulkarni, S.K. (2005). Differential effect of zileuton, a 5-lipoxygenase inhibitor, against nociceptive paradigms in mice and rats. Pharmacol. Biochem. Behav. 81, 433-439 https://doi.org/10.1016/j.pbb.2005.03.015
- Szabo, A., Helyes, Z., Sandor, K., Bite, A., Pinter, E., Nemeth, J., Banvolgyi, A., Bolcskei, K., Elekes, K., and Szolcsanyi, J. (2005). Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: In vivo study using gene-deficient mice. J. Pharmacol. Exp. Ther. 314, 111-119 https://doi.org/10.1124/jpet.104.082487
- Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21, 531-543 https://doi.org/10.1016/S0896-6273(00)80564-4
- Tonussi, C.R., and Ferreira, S.H. (1999). Tumor necrosis factoralpha mediates carrageenan-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joint. Pain 82, 81-87 https://doi.org/10.1016/S0304-3959(99)00035-4
- Uchida, K. (2008). A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. Mol. Cells 25, 347-351
- Vane, J., and Botting, R. (1987). Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1, 89-96 https://doi.org/10.1096/fasebj.1.2.3111928
- Vane, J.R., Bakhle, Y.S., and Botting, R.M. (1998). Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97-120 https://doi.org/10.1146/annurev.pharmtox.38.1.97
- Walker, K.M., Urban, L., Medhurst, S.J., Patel, S., Panesar, M., Fox, A.J., and McIntyre, P. (2003). The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 304, 56-62 https://doi.org/10.1124/jpet.102.042010
- Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E.D. (1999). Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452-457 https://doi.org/10.1038/22761
피인용 문헌
- Farnesyl Pyrophosphate Is a Novel Pain-producing Molecule via Specific Activation of TRPV3 vol.285, pp.25, 2009, https://doi.org/10.1074/jbc.m109.087742
- Endogenous Lipid-derived Ligands for Sensory TRP Ion Channels and Their Pain Modulation vol.33, pp.10, 2010, https://doi.org/10.1007/s12272-010-1004-9
- Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception : Resolvin D1 inhibits sensory TRPs vol.161, pp.3, 2009, https://doi.org/10.1111/j.1476-5381.2010.00909.x
- NMDA Receptor, PKC and ERK Mediate Fos Expression Induced by the Activation of Group I Metabotropic Glutamate Receptors in the Spinal Trigeminal Subnucleus Oralis vol.30, pp.5, 2009, https://doi.org/10.1007/s10059-010-0140-x
- Effects of transient receptor potential channel blockers on pacemaker activity in interstitial cells of Cajal from mouse small intestine vol.32, pp.2, 2009, https://doi.org/10.1007/s10059-011-1019-1
- Isopentenyl pyrophosphate is a novel antinociceptive substance that inhibits TRPV3 and TRPA1 ion channels vol.152, pp.5, 2009, https://doi.org/10.1016/j.pain.2011.01.044
- Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors vol.92, pp.4, 2009, https://doi.org/10.1152/physrev.00048.2010
- Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors vol.109, pp.17, 2009, https://doi.org/10.1073/pnas.1110460109
- Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia vol.27, pp.5, 2009, https://doi.org/10.1096/fj.12-217414
- Resolvins: Endogenously-Generated Potent Painkilling Substances and their Therapeutic Perspectives vol.11, pp.6, 2009, https://doi.org/10.2174/1570159x11311060009
- Sensory TRP Channel Interactions with Endogenous Lipids and Their Biological Outcomes vol.19, pp.4, 2014, https://doi.org/10.3390/molecules19044708
- Are Sensory TRP Channels Biological Alarms for Lipid Peroxidation? vol.15, pp.9, 2009, https://doi.org/10.3390/ijms150916430
- Natural polymers for the microencapsulation of cells vol.11, pp.100, 2009, https://doi.org/10.1098/rsif.2014.0817
- Synthetic and Natural Inhibitors of Phospholipases A2: Their Importance for Understanding and Treatment of Neurological Disorders vol.6, pp.6, 2009, https://doi.org/10.1021/acschemneuro.5b00073
- Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/7801543
- TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain vol.56, pp.1, 2019, https://doi.org/10.1007/s12035-018-1093-x
- AK106-001616, a Potent and Selective Inhibitor of Cytosolic Phospholipase A2: In Vivo Efficacy for Inflammation, Neuropathic Pain, and Pulmonary Fibrosis vol.369, pp.3, 2019, https://doi.org/10.1124/jpet.118.255034