Physical Properties of Polymer Composite Recycling Recycled Aggregate

순환골재를 재활용한 폴리머 복합재료의 물성

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • 황의환 (공주대학교 화학공학부) ;
  • 전종기 (공주대학교 화학공학부)
  • Received : 2008.10.29
  • Accepted : 2008.11.13
  • Published : 2009.02.10

Abstract

Nowadays, recycling of recycled aggregates from the waste concrete is seriously demanded for the protection of environment and the shortage of aggregates owing to the large scale construction project. In this study, for the development of polymer composite recycling recycled aggregates from the waste concrete, twenty five specimens of the polymer composite were prepared with the five levels of replacement ratios of recycled aggregates (0, 25, 50, 75, 100%) and polymer-cement ratios (0,5, 10, 15, 20%), respectively. For the evaluation of the performance of polymer composite specimens, various physical properties such as compressive and flexural strengths, water absorption, hot water resistance, total pore volume and porosity were investigated. As a result, physical properties of polymer composite were remarkably improved with an increase of polymer cement ratios, but greatly decreased with the replacement ratios of recycled aggregates.

오늘날 대규모 건설사업에 따른 골재의 고갈과 환경보호 측면에서 폐콘크리트 순환골재의 재활용이 절실히 요구되고있다. 폐콘크리트 순환골재를 재활용한 폴리머 복합재료를 개발하기 위하여 순환골재의 치환율을 5단계로 변화시키고(0, 25, 50, 75, 100%) 또 폴리머-시멘트비도 5단계로 변화시켜(0, 5, 10, 15, 20%) 총 25종류의 공시체를 제조하였다. 공시체의 제 성능을 조사하기 위하여 공시체의 압축 및 휨강도, 흡수시험, 내열수성시험, 총세공량 및 공극률에 대하여 조사하였다. 시험결과, 폴리머 복합재료의 물성은 폴리머 시멘트비의 증가에 따라 현저히 증가되었으나 폐콘크리트 순환골재의 치환율 증가에 따라서는 크게 저하되었다.

Keywords

Acknowledgement

Supported by : 공주대학교

References

  1. E. H. Hwang and T. S. Hwang, J. Ind. Eng. Chem., 13, 585 (2007)
  2. J. M. Kim, S. H. Cho, K. J. Kwon, and M. H. Kim, J. Archi. Institute of Korea, 21, 121 (2005)
  3. H. W. Song, K. J. Byun, and J. H. Ha, J. Korean Concrete Institute, 12, 3 (2000)
  4. M. H. Kim, J. Korean Concrete Institute, 10, 52 (1998)
  5. B. H. Lee, K. W. Kim, J. S. Park, and J. Y. Kim, J. Korean Concrete Institute, 7, 136 (1995)
  6. M. H. Kim and S. P. Kang, J. Korean Concrete Institute, 15, 21 (2003)
  7. F. Tomosawa and T. Noguchi, Integrated Design and Environmental Issues in Concrete Technology, 263 (1996)
  8. G. Y. Kim, J. Korean Concrete Institute, 15, 36 (2003)
  9. S. W. Shin, J. Korean Concrete Institute, 15, 52 (2003) https://doi.org/10.4334/JKCI.2003.15.1.052
  10. E. H. Hwang, D. S. Kil, J. Y. Shin, T. S. Hwang, and S. H. Yang, Proc. 5th Asian Symp. Polymers in Concrete, N. Laksmanan, C. V. Vaidyanathan, Y. Ohama, and M. Neelamegam Eds. pp. 323-331, Chennai, India (2006)
  11. E. H. Hwang and T. S. Hwang, J. Ind. Eng. Chem., 13, 585 (2007)
  12. E. H. Hwang, Y. S. Ko, and J.-K. Jeon, J. Ind. Eng. Chem., 14, 265 (2008) https://doi.org/10.1016/j.jiec.2007.11.002
  13. Y. Ohama, Proc. 5th Asian Symp. Polymers in Concrete, N. Laksmanan, C. V. Vaidyanathan, Y. Ohama, and M. Neelamegam Eds. 3, Chennai, India (2006)
  14. D. W. Fowler and G. W. Depuy, Proc. 8th Intern. Symp. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds. 67, Oostende, Belgium (1995)
  15. E. H. Hwang, D. S. Kil, and T. S. Hwang, J. Korean Ind. Eng. Chem., 11, 792 (2000)
  16. E. H. Hwang, T. S. Hwang, and D. S. Kil, J. Korean Ind. Eng. Chem., 10, 1066 (1999)
  17. E. H. Hwang, D. S. Kil, and I. S. Oh, J. Korean Ind. Eng. Chem., 8, 979 (1997)
  18. K. S. Yeon, Proc. 5th Asian symp. Polymers in Concrete, N. Laksmanan, C. V. Vaidyanathan, Y. Ohama, and M. Neelamegam Eds. Chennai, India, 13, (2006)
  19. Y. Ohama and K. Shiroishida, Proc. American Concrete Institute J. T. Dikeou and D.W. Fowlder Eds. Detroit, US, 313, (1985)
  20. Y. Ohama, Proc. 9th Intern. symp. Polymers in Concrete, F. Sandrolini Ed. 1, Bologna, Italy (1998)
  21. R. N. Swamy, Proc. 8th Intern. Symp. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds. 21, Oostende, Belgium (1995)
  22. E. H. Hwang, T. S. Hwang, and Y. Ohama, J. Korean Ind. Eng. Chem., 5, 786 (1994)
  23. E. H. Hwang, T. S. Hwang, and E. Kamada, J. Korean Ceramic Society, 31, 949 (1994)
  24. D. W. Fowler, Proc. 8th Intern. symp. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 13, Oostende, Belgium (1995)
  25. V. V. Paturoev and V. P. Trambovetsky, Proc. 8th Intern. Symp. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 451, Oostende, Belgium (1995)
  26. Y. Ohama, M. Demura, and M. Komiyama, J. Society of Materials Science, 29, 266 (1980) https://doi.org/10.2472/jsms.29.266
  27. P. Mani, A. K. Gupta, and S. Krishnamoorthy, Int. J. Adhesion Adhesives, 7, 157 (1987) https://doi.org/10.1016/0143-7496(87)90071-6
  28. E. H. Hwang, J. J. Choi, and T. S. Hwang, J. Korean Ind. Eng. Chem., 16, 317 (2005)
  29. Y. Ohama, Concrete Admixtures Handbook, Noyes Publication, New Jersey, 1984
  30. M. K. Joo, Y. S. Lee, K. S. Yeon, and Y. Ohama, Proc. 11th Intern. Symp. Polymers in Concrete, M. Maultzsch Ed. 99, Berlin, Germany (2004)
  31. T. Satoh, Y. Ohama, and K. Demura, Summary of Technical Papers of Architectural Institute of Japan, 137 (1994)