DOI QR코드

DOI QR Code

Production of Bovine Nuclear Transfer Embryos Using Fibroblasts Transfected with Single-Chain Human Follicle-Stimulating Hormone Gene

  • Yoon, Ji Young (Department of Animal Sciences, Chungbuk National University) ;
  • Kwon, Mo Sun (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kang, Jee Hyun (Department of Physiology, Dankook University School of Medicine) ;
  • Ahn, Kwang Sung (Department of Physiology, Dankook University School of Medicine) ;
  • Kim, So Seob (Department of Biotechnology, Daegu University) ;
  • Kim, Nam-Hyung (Department of Animal Sciences, Chungbuk National University) ;
  • Kim, Jin-Hoi (Department of Animal Biotechnology, Konkuk University) ;
  • Kim, Teoan (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Shim, Hosup (Department of Physiology, Dankook University School of Medicine)
  • 투고 : 2008.04.23
  • 심사 : 2008.09.06
  • 발행 : 2009.02.01

초록

Human follicle-stimulating hormone (hFSH) is a pituitary glycoprotein that regulates follicular development and ovulation. Clinically, hFSH has been used to induce follicular growth in infertile women. The hormone is composed of heterodimers, including a common ${\alpha}$ subunit among the gonadotropin family and a hormone-specific ${\beta}$ subunit. Since assembly of the heterodimer is a rate-limiting step in the production of functional hFSH, transgenic clone cows carrying a single-chain hFSH transgene may efficiently produce functional hormone. Genes encoding the ${\alpha}$ and ${\beta}$ subunits of hFSH were linked using the C-terminal peptide sequence from the ${\beta}$ subunit of human chorionic gonadotropin. Bovine fetal fibroblasts were transfected with the gene construct, including the goat ${\beta}$-casein promoter and a single-chain hFSH coding sequence. Transfected fibroblasts were transferred into enucleated oocytes, and individual nuclear transfer (NT) embryos developed to the blastocyst stage were analyzed for the transgene by polymerase chain reaction. Seventy eight blastocysts (30.8%) were developed from 259 reconstructed embryos. Among these blastocysts, the hFSH gene was detected in 70.8% (34/48) of the embryos. Subsequent transfer of hFSH-transgenic clone embryos to 31 recipients results in 11 (35.5%) early pregnancies. However, all fetuses were lost before reaching day 180 of gestation. The results from this study demonstrated that bovine NT embryos carrying single-chain hFSH could be produced, and further extensive studies in which NT embryos are transferred to more recipients may give rise to single chain hFSH-transgenic cows for biomedical applications.

키워드

참고문헌

  1. Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M.Destrempes, C. Cammuso, J. L. Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17:456-461 https://doi.org/10.1038/8632
  2. Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C.Blackwell, L. F. Ponce de Leon and J. M. Robl. 1998, Cloned transgenic calves produced from nonquiescent fetal fibroblasts, Sci. 280:1256-1258 https://doi.org/10.1126/science.280.5367.1256
  3. Cibelli, J. B., K. H. Campbell, G. E. Seidel, M. D. West and R. P. Lanza. 2002a, The health profile of cloned animals, Nat. Biotechnol. 20:13-14 https://doi.org/10.1038/nbt0102-13
  4. Cibelli, J. B., R. P. Lanza, K. H. Campbell and M. D. West. 2002b, Principles of cloning. Academic Press, San Diego, California
  5. Fares, F. A., N. Suaanuma, K. Nishimori K, P. S. LaPolt. A. J. W. Hsueh and I. Boime. 1992, Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin 8 subunit to follitropin 8 subunit, Proc. Natl. Acad. Sci. USA. 89:4304-4308 https://doi.org/10.1073/pnas.89.10.4304
  6. Farin, P. W., J. A. Piedrahita and C. E. Farin. 2006, Errors in development of fetuses and placentas from in vitro-produced bovine embryos, Theriogenol. 65:178-191 https://doi.org/10.1016/j.theriogenology.2005.09.022
  7. Gordon, J. W., G. A. Scangos, D. J. Plotkin, J. A. Barbosa and F. H. Ruddle. 1980, Genetic transformation of mouse embryos by microinjection of purified DNA, Proc. Natl. Acad. Sci. USA.77:7380-7384 https://doi.org/10.1073/pnas.77.12.7380
  8. Hwang, S., E. J. Choi, S. You, Y. J. Choi, K. S. Min and J. T. Yoon. 2006, Development of bovine nuclear transfer embryos using life-span extended donor cells transfected with foreign gene, Asian-Aust. J. Anim. Sci. 19:1574-1579
  9. Jahner, D., K. Hasse, R. Mulligan and R. Jaenisch. 1985. Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection. Proc. Natl. Acad. Sci. USA. 82:6927-6931 https://doi.org/10.1073/pnas.82.20.6927
  10. Kanegae, Y., G. Lee, Y. Sato, M. Tanaka, M. Nakai, T. Sakaki, S. Sugano and I. Saito. 1995, Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase, Nucleic Acid Res,23:3816-3821 https://doi.org/10.1093/nar/23.19.3816
  11. Lai, L., K. W. Park, H. T. Cheong, B. Kuhholzer, M. Samuel, A. Bonk, G. S. Im, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter and R. S. Prather. 2002. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol. Reprod. Dev. 62:300-306 https://doi.org/10.1002/mrd.10146
  12. Lavitrano, M., A. Camaioni, V. M. Fazio, S. Dolci, M. G. Farace and C. Spadafora. 1989, Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice, Cell57:717-723 https://doi.org/10.1016/0092-8674(89)90787-3
  13. Lee, H. J., S. Hwang and J. T. Yoon. 2007, Effects of bovine somatotropin (bST) administration combined with controlled internal drug release (CIDR) on embryo quality and pregnancy of Hanwoo (Korean native beef cattle) during commercial embryo transfer program, Asian-Aust. J. Anim. Sci. 20:194-199
  14. Pierce, J. G. and T. F. Parsons. 1981, Glycoprotein hormones: Structure and function, Annu. Rev. Biochem. 50:465-495 https://doi.org/10.1146/annurev.bi.50.070181.002341
  15. Rosenkrans, C. F. J., G. Q. Zeng, G. T. McNamara, P. K. Schoff and N. L. First. 1993. Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod. 49:459-462 https://doi.org/10.1095/biolreprod49.3.459
  16. Ruddon, R. W., S. A. Sherman and E. Bedows. 1996, Protein folding in the endoplasmic reticulum: lessons from the human chorionic gonadotropin beta subunit, Protein. Sci. 5:1443-1452 https://doi.org/10.1002/pro.5560050801
  17. Schnieke, A. E., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman and K. H. Campbell, 1997,Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts, Sci. 278:2130-2133 https://doi.org/10.1126/science.278.5346.2130
  18. Sugahara, T., A. Sato, M. Kudo, D. Ben-Menahem, M. R. Pixley, A. J. Hsueh and I. Boime. 1996, Expression of biologically active fusion genes encoding the common alpha subunit and the follicle-stimulating hormone beta subunit. Role of a linker sequence, J. Biol. Chem. 271:10445-10448 https://doi.org/10.1074/jbc.271.18.10445
  19. Thotakura, N. R. and D. L. Blithe. 1995, Glycoprotein hormones: Glycobiology of gonadotrophins, thyrotrophin and free alpha subunit, Glycobiol. 5:3-10 https://doi.org/10.1093/glycob/5.1.3
  20. Young, L. E., K. D. Sinclair and I. Wilmut. 1998, Large offspring syndrome in cattle and sheep, Rev. Reprod. 3:155-163 https://doi.org/10.1530/ror.0.0030155