Poly(lactic acid)/Wood Flour/Montmorillonite Nanocomposites (II) : Thermal properties

  • Kim, Jin-Sung (Department of Material Science and Engineering, Korea University) ;
  • Lee, Sun-Young (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Doh, Geum-Hyun (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Kang, In-Aeh (Division of Environmental Material Engineering Department of Forest Products Korea Forest Research Institute) ;
  • Yoon, Ho-Gyu (Department of Material Science and Engineering, Korea University)
  • Received : 2009.04.30
  • Accepted : 2009.07.03
  • Published : 2009.09.25

Abstract

This study investigates the thermal properties of nanocomposites prepared from poly(lactic acid) (PLA), wood flour (WF) and montmorillonite (MMT) by melt compounding with a twin screw extruder. In order to enhance the mechanical properties of PLA/WF composites, maleic anhydride grafted PLA (MAPLA) is synthesized as a compatibilizer. MAPLA prepared in the laboratory is characterized using FR-IR. From SEM microphotographs, the presence of MAPLA has a positive effect on the mechanical properties of WF-reinforced PLA composites. The addition of WF/MAPLA into neat PLA increased the glass transition temperature ($T_g$). The addition of 1 to 5 wt% MMT into PLA/WF/MAPLA composite decreases the $T_g$. The cold crystallization temperature ($T_{cc}$) was decreased by the addition of MMT. The MMT could act as effective nucleating sites of PLA crystallization. The thermal stability evaluated by thermogravimetric analysis (TGA) is improved with the contents of MMT up to 3 wt%.

Keywords

References

  1. Yang, H. S., H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang. 2004. Rice-husk filled polypropylene composites; mechanical and morphological study. Composite Structures 63: 305-312 https://doi.org/10.1016/S0263-8223(03)00179-X
  2. Lee, S. Y., H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim, and J. N. Lee. 2004. Creep behavior and manufacturing paramenters of wood flour filled polypropylene composites. Composite Structures 65: 459-469 https://doi.org/10.1016/j.compstruct.2003.12.007
  3. Lee, S. Y., I. A. Kang, G. H. Doh, H. G. Yoon, and B. D. Park. 2008. Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. Journal of Thermoplastic Composite Materials 21: 209-223 https://doi.org/10.1177/0892705708089473
  4. Yu, L., K. Dean, and L. Li. 2006. Polymer blends and composites from renewable resources. Progress in Polymer Science 31: 576-602 https://doi.org/10.1016/j.progpolymsci.2006.03.002
  5. Mohanty, A. K., M. Misra, and G. Hinrichsen, 2000. Biofibers, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276/277: 1-24 https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  6. Raya, S. S., K. Yamada, M. Okamoto, and K. Ueda. 2003. New polylactide-layered silicate nanocomposites. 2. concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44: 857-866 https://doi.org/10.1016/S0032-3861(02)00818-2
  7. Iannace, S., R. Ali, and L. Nicolais. 2001. Biodegradation of aliphatic polyester composites reinforced with Abaca fiber. Journal of Applied Polymer Science 79: 1084-1091 https://doi.org/10.1002/1097-4628(20010207)79:6<1084::AID-APP120>3.0.CO;2-J
  8. Eichhorn, S. J., C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell, and A. Dufresne. 2001. Current international research into cellulosic fibres and composites. Journal of Materials Science 36: 2107-2131 https://doi.org/10.1023/A:1017512029696
  9. Mathew, A. P. and A. Dufresne. 2002. Morphological Investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3: 609-617 https://doi.org/10.1021/bm0101769
  10. Morin, A. and A. Dufresne. 2002. Nanocomposites of chitin whiskers from riftia tubes and poly (caprolactone). Macromolecules 35: 2190-2199 https://doi.org/10.1021/ma011493a
  11. Huda, M. S., L. T. Drzal, A. K. Mohanty, and M. Misra. 2006. Chopped glass and recycled newspaper as reinforced fibers in injection molded poly(lactic acid) (PLA) composites: A comparative study. Composite. Science and Technology 66: 1813-1824 https://doi.org/10.1016/j.compscitech.2005.10.015
  12. Huda, M. S., A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra. 2005. Green composites from recycled cellulose and poly(lactic acid): Physicomechanical and morphological properties evaluation. Journal of Materials Science 40: 4221-4229 https://doi.org/10.1007/s10853-005-1998-4
  13. Ke, T. and X. Sun. Physical properties of poly (lactic acid) and starch composites with various blending ratios. Cereal Chemistry 77: 761-768 https://doi.org/10.1094/CCHEM.2000.77.6.761
  14. Van de Velde, K. and P. Kiekens. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing 21: 433-442 (2002) https://doi.org/10.1016/S0142-9418(01)00107-6
  15. Bleach, N. C., S. N. Nazhat, K. E. Tanner, M. Kellomaki, and P. Tormala. 2002. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23:1579-1585 https://doi.org/10.1016/S0142-9612(01)00283-6
  16. Kasuga, T., Y. Ota, M. Nogami, and Y. Abe. 2001. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 2: 19-23 https://doi.org/10.1016/0142-9612(81)90082-X
  17. Clemons, C. 2002. Wood plastic composites in the United States: the interfacing of two industries. Forest Products Journal 52: 10-18
  18. Hendricks, S. B. 1942. Lattice structure of clay minerals and some properties of clays. Journal of Geology 50: 276-290 https://doi.org/10.1086/625051
  19. Mering, J. 1946. On the hydration of montmorillonite. Transanctions of the Faraday Society 42: 205-219 https://doi.org/10.1039/tf946420b205
  20. Kazayawoko, M. and J. J. Balatinecz. 1995. Adhesion mechanisms in wood fiber polypropylene composites. Forest Products Society. Madison, WI. 81
  21. Febrianto F., M. Yoshioka, Y. Nagai, W. Syafii, and N. Shiraishi. 2006. Characterization of composites of wood flour and polylactic acid. Mokchae Konghak 34(5): 67-78
  22. Cowie, J. M. G. 1991. Polymer, chemistry & physics of modern materials, New York, Chapmen & Hall
  23. Lee, J. H., T. G. Park, H. S. Park, D. S. Lee, Y. K. Lee, S. C. Yoon, and J. D. Nam. 2003. Thermal and mechanical characteristics of poly (lactic acid) nanocomposites scaffold. Biomaterials 24: 2773-2778 https://doi.org/10.1016/S0142-9612(03)00080-2