DOI QR코드

DOI QR Code

Effect of genistein on the sexual maturation in immature female rats

미성숙 암컷 흰쥐의 성 성숙에 미치는 genistein의 효과

  • Lee, Woocheol (Department of Life Science, Sangmyung University) ;
  • Lee, Sung-Ho (Department of Life Science, Sangmyung University) ;
  • Ahn, Ryun-Sup (Graduate School of Complementary and Alternative Medicine, Pochon CHA Medical University) ;
  • Park, Mi Jung (Department of Pediatrics, College of Medicine, Inje University)
  • 이우철 (상명대학교 생명과학전공) ;
  • 이성호 (상명대학교 생명과학전공) ;
  • 안련섭 (포천중문의과대학 대체의학대학원) ;
  • 박미정 (인제대학교 의학대학 소아과학교실)
  • Received : 2008.11.11
  • Accepted : 2008.12.04
  • Published : 2009.01.15

Abstract

Puopose : Exposure to dietary phytoestrogens such as genistein during early childhood is a growing public health concern. We examined the effect of early exposure to genistein on sexual maturation in immature rats. Methods : Weaning (3wk-old) Sprague-Dawley female rats were assigned to three groups (n=6 for each): fed by high dose of genistein (100 mg/kg/d), low dose of genistein (10 mg/kg/d) and control group. First vaginal opening (VO) day was observed. Structural alterations in the ovary and uterus were assessed by histologically. Expression of genes of $ER{\alpha}$, $ER{\beta}$, and progesterone receptor (PR) in the ovary and uterus were investigated by RT-PCR. Results : High genistein group had earlier VO than control and low genistein group. Graafian follicles and corpora lutea were observed from the ovary of genistein-treated groups, while primary, secondary follicles and small atretic follicles were observed in the control group. Hypertrophy of luminal and glandular uterine epithelia were found in the genistein-treated groups while poor development of gland and fewer myometrial cell layers were evident in control group. In ovary, the transcriptional activities of $ER{\alpha}$ and $ER{\beta}$ were higher in high genistein group than in controls. In uterus, the transcriptional activities of $ER{\alpha}$, $ER{\beta}$ and PR were higher in low genistein group than in controls. Conclusion : Acute exposure to genistein during the prepubertal period could activate the reproductive endocrine system resulting in the early onset of puberty in female rats. Further clinical investigation on the effect of genistein on the sexual maturation in children is warranted.

목 적 : 어린시기에 genistein과 같은 식물성 에스트로겐의 섭취가 사회적 관심사로 대두되고 있다. 본 연구에서는 어린 쥐에서 genistein에 노출이 사춘기 개시 및 생식기관에 미치는 영향을 알아 보았다. 방 법 : 이유기(3주령) 암컷 흰쥐를 저용량 genistein (10 mg/kg/day), 고용량 genistein (100 mg/kg/day), 대조군의 세 그룹 (각 그룹 당 n=6)으로 나누고 첫 번째 질구 개방이 확인되는 날까지 농도별로 각각 경구 투여하였다. 질구 개방일을 확인하고 생식 기관의 무게를 측정하며 난소와 자궁에서 $ER{\alpha}$, $ER{\beta}$, PR 유전자들의 발현양상을 RT-PCR을 이용해 비교하였고, 난소와 자궁의 구조적 이상을 확인하기 위해 조직학적 분석을 실시하였다. 결 과 : 고용량 genistein 투여군은 저용량군 및 대조군에 비해 질구 개방일이 유의하게 촉진되었다. RT-PCR결과, $ER{\alpha}$, $ER{\beta}$, PR의 전사활성은 genistein에 노출된 쥐들의 난소와 자궁에서 유의하게 증가하였다. 그라프 난포와 황체는 genistein 투여군의 난소에서만 발견되었고, 대조군의 난소에서는 1차, 2차 난포들과 작은 미성숙 난포들만이 관찰되었다. Genistein 처리군의 자궁에서도 내막층 근막층 및 상피층이 과다성장상태였으나 대조군에서는 모든 세포층과 분비선이 미약하게 발달하였다. 결 론 : 결론적으로, 사춘기 이전 시기에 비교적 단기간의 genistein 노출이라도 미성숙 암컷 흰쥐에서 생식 내분비 활성을 일으켜 조기 사춘기와 성 스테로이드 호르몬 수용체의 발현 양상 변화를 초래할 수 있으며, genistein의 노출이 아동기 성성숙에 미치는 영향에 대한 더욱 많은 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

Supported by : Inje University

References

  1. Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinol 1997;138:863-70 https://doi.org/10.1210/en.138.3.863
  2. Casanova M, You L, Gaido KW, Archibeque-Engle S, Janszen DB, Heck HA. Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci 1999;51:236-44 https://doi.org/10.1093/toxsci/51.2.236
  3. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 2004;91:513-31 https://doi.org/10.1079/BJN20031075
  4. Nadin SB, Vargas-Roig LM, Ciocca DR. A silver staining method for single-cell gel assay. J Histochem Cytochem 2001;49:1183-6
  5. Fitzpatrick LA. Soy isoflavones: hope or hype? Maturitas 2003;44 Suppl 1:S21-9
  6. Micheal McClain R, Wolz E, Davidovich A, Pfannkuch F, Edwards JA, Bausch J. Accute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol 2006;44:56-80 https://doi.org/10.1016/j.fct.2005.05.021
  7. Sarkar FH, Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 2002; 21:265-80 https://doi.org/10.1023/A:1021210910821
  8. Goldwyn S, Lazinsky A, Wei H. Promotion of health by soy isoflavones: efficacy, benefit and safety concerns. Drug Metabol Drug Interact 2000;17:261-89
  9. Suthar AC, Banavalikar MM, Biyani MK. Pharmacological activities of genistein, an isoflavone from soy (Glysine max): part I - anti-cancer activity. Indian J Exp Biol 2001; 39:511-9
  10. Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example. Mol Nutr Food Res 2007;51:832-44 https://doi.org/10.1002/mnfr.200600258
  11. Kato H, Ota T, Furuhashi T, Ohta Y, Iguchi T. Changes in reproductive organs of female rats treated with bisphenol A during the neonatal period. Reprod Toxicol 2003;17:283-8 https://doi.org/10.1016/S0890-6238(03)00002-9
  12. Hughes CL, Liu G, Beall S, Foster WG, Davis V. Society for experimental biology and medicine effects of genistein or soy milk during late gestation and lactation on adult uterine organization in the rat. Exp Biol Med (Maywood) 2004;229:108-17
  13. Takagi H, Shibutani M, Lee KY, Lee HC, Nishihara M, Uneyama C, et al. Lack of modifying effects of genistein on disruption of the reproductive system by perinatal dietary exposure to ethinylestradiol in rats. Reprod Toxicol 2004;18: 687-700 https://doi.org/10.1016/j.reprotox.2004.03.002
  14. Levy JR, Faber KA, Ayyash L, Hughes CL Jr. The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc Soc Exp Biol Med 1995; 208:60-6
  15. Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 2006;55:1-12 https://doi.org/10.1207/s15327914nc5501_1
  16. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156-9 https://doi.org/10.1038/nprot.2006.83
  17. Yoshida M, Shimomoto T, Katashima S, Watanabe G, Taya K, Maekawa A. Maternal exposure to low doses of bisphenol A has no effects on development of female reproductive tract and uterine carcinogenesis in donryu rats. J Reprod Dev 2004;50:349-60 https://doi.org/10.1262/jrd.50.349
  18. Tinwell H, Haseman J, Lefevre PA, Wallis N, Ashby J. Normal sexual development of two strains of rat exposed in utero to low doses of bisphenol A. Toxicol Sci 2002;68:339- 48 https://doi.org/10.1093/toxsci/68.2.339
  19. Brown NM, Lamartiniere CA. Genistein regulation of transforming growth factor-alpha, epidermal growth factor (EGF) and EGF receptor expression in the rat uterus and vagina. Cell Growth Differ 2000;11:255-60
  20. Brown NM, Wang J, Cotroneo MS, Zhao YX, Lamartiniere CA. Prepubertal genistein treatment modulates TGF-alpha, EGF and EGF-receptor mRNAs and proteins in the rat mammary gland. Mol Cell Endocrinol 1998;144:149-65 https://doi.org/10.1016/S0303-7207(98)00106-3
  21. Cotroneo MS, Wang J, Eltoum IA, Lamartiniere CA. Sex steroid receptor regulation by genistein in the prepubertal rat uterus. Mol Cell Endocrinol 2001;173:135-45 https://doi.org/10.1016/S0303-7207(00)00405-6
  22. Naciff JM, Jump ML, Torontail SM, Carr Gj, Daston JP, Overmann GJ, et al. Gene expression profile induced by 17alpha-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicol Sci 2002;68:184-99 https://doi.org/10.1093/toxsci/68.1.184
  23. Patisaul HB, Melby M, Whitten PL, Young LJ. Genistein affects ER beta- but not ER alpha-dependent gene expression in the hypothalamus. Endocrinology 2002;143:2189- 97 https://doi.org/10.1210/en.143.6.2189
  24. Borradaile NM, Dreu LE, Wilcox LJ, Edwards JY, Huff MW. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem J 2002;366:531-9 https://doi.org/10.1042/BJ20020046
  25. Hertrampf T, Degen GH, Kaid AA, Laudenbach-Leschowsky U, Seibel J, Di Virgilio AL, et al. Combined Effects of Physical Activity, Dietary isoflavones and 17beta-estradiol on movement drive, body weight and bone mineral density in ovariectomized female rats. Planta Med 2006;72:484-7 https://doi.org/10.1055/s-2006-931579
  26. Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol 1998;65:143-50 https://doi.org/10.1016/S0960-0760(98)00027-2
  27. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, et al. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci U S A 1993;90: 2690-4 https://doi.org/10.1073/pnas.90.7.2690
  28. Tripathi YB, Lim RW, Fernandez-Gallardo S, Kandala JC, Guntaka RV, Shukla SD. Involvement of tyrosine kinase and protein kinase C in platelet-activating-factor-induced c-fos gene expression in A-431 cells. Biochem J 1992;286: 527-33
  29. Zung A, Glaser T, Kerem Z, Zadik Z. Breast development in the first 2 years of life: an association with soy-based infant formulas. J Pediatr Gastroenterol Nutr 2008;46:191-5 https://doi.org/10.1097/MPG.0b013e318159e6ae
  30. Wolff MS, Britton JA, Boguski L, Hochman S, Maloney N, Serra N, et al. Environmental exposures and puberty in inner-city girls. Environ Res 2008;107:393-400 https://doi.org/10.1016/j.envres.2008.03.006

Cited by

  1. High serum isoflavone concentrations are associated with the risk of precocious puberty in Korean girls vol.75, pp.6, 2011, https://doi.org/10.1111/j.1365-2265.2011.04127.x
  2. Endocrine Disrupting Chemicals and Pubertal Development vol.27, pp.1, 2012, https://doi.org/10.3803/enm.2012.27.1.20
  3. The Role of Pediatric Nutrition as a Modifiable Risk Factor for Precocious Puberty vol.11, pp.12, 2021, https://doi.org/10.3390/life11121353