전기+UV 공정에 의한 E. coli 불활성화

Inactivation of E. coli by Electrolysis+UV Process

  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 보건환경전공)
  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Department of Health & Environment, Daegu University)
  • 투고 : 2009.03.13
  • 심사 : 2009.07.28
  • 발행 : 2009.09.30

초록

This study has carried out to evaluate the performance of single (electrolysis, UV and ultrasonic process) and complex process (Electrolysis+UV, UV+Ultrasonic and Electrolysis+Ultrasonic) for the purpose of disinfection of Escherichia coli in water. The order of disinfection performance for E. coli in single process lie in: Electrolysis ${\fallingdotseq}$ UV >> ultrasonic process. OH radical was not produced in single disinfection process. Among the three kinds of complex process, disinfection performance of the Electrolysis+UV was higher than that of the other process (UV+Ultrasonic and Electrolysis+Ultrasonic). It demonstrated a synergetic effect between the UV and electrolysis. When the use of $Na_2SO_4$ as electrolyte instead of NaCl, current increase or more reaction time was needed for the complete disinfection. The disinfection performance of pre-electrolysis (20 W, 30sec) and post-UV (10 W, 30 sec) was higher than that of the simultaneous electrolysis+UV process at same electric power (30 W, 30 second).

키워드

참고문헌

  1. 권순구, 우준희, 김대수, 어수택, 정연태, 김용훈, 박춘식 (1990). 폐결핵환자에서 호중구의 H2O2 형성 및 IgG 수용체의 표현율. 대한내과학회지, 39(5), pp. 613-619
  2. 김동석, 박영식(2009). 산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(2). 한국환경과학회지, 18(1), pp. 61-72 https://doi.org/10.5322/JES.2009.18.1.061
  3. 김탁현, 박철환, 배우근, 신응배, 김상용(2001). RuO2/Ti 전극에 의한 염색폐수의 전기화학적 산화처리. 한국섬유공학회지, 38(7), pp. 366-372
  4. 김홍석, 서인석, 최일환, 김연권, 김지연, 이진영(2004). 용존공기를 이용한 소독능 향상 전기분해 소독 공정개발. 공동추계학술발표회 논문집, 한국물환경학회.대한상수도학회, pp. 625-628
  5. 박영식(2008). 전기분해와 UV 조사에 의한 Rhodamine B의 제거(1). 한국환경보건학회지, 34(6), pp. 439-445 https://doi.org/10.5668/JEHS.2008.34.6.439
  6. 박영식, 정노성, 김동석(2007). 소규모 오수처리를 위한 전기화학적 방법에 의한 대장균 소독에 관한 연구. 한국환경과학회지, 16(4), pp. 441-447 https://doi.org/10.5322/JES.2007.16.4.441
  7. 신동호, 이용택(2005). 하수 방류수 살균 소독을 위한 무전극 UV 램프의 제조 및 특성. 공업화학, 16(4), pp. 570-575
  8. 심주현, 서형준, 권병대(2006). 초음파에 의한 2중 수조에서 의 조류제거 효율에 관한 연구. 대한환경공학회지, 28(12), pp. 1310-1315
  9. 유석봉(2005). 전기분해를 적용한 가정용정수기의 살균특성 연구. 석사학위논문, 인하대학교
  10. 이석현(2002). 수처리를 위한 자외선소독기술의 현황과 전망. 공동춘계학술발표회 논문집, 한국물환경학회.대한상수도학회, pp. 33-35
  11. 조민, 김지연, 유제용(2004). UV 조사(Ultraviolet Irradiation)에 의한 미생물의 불활성화. 첨단환경기술, 2, pp. 5-18
  12. 조민, 정우동, 윤제용(2007). 표면 살균을 위한 UV 기술의 적용. 대한환경공학회지, 29(9), pp. 1020-1026
  13. 환경부(2002). 하수처리장 소독시설 설치사업 업무처리일반 지침
  14. Bergmann, H., Iourtchouk, T., Schops, K., and Bouzek, K. (2002). New UV irradiation and direct electrolysis-promising methods for water disinfection. Chem. Eng. J., 85, pp. 111-120 https://doi.org/10.1016/S1385-8947(01)00188-7
  15. Drogui, P., Elmaleh, S., Rumeau, M., Bernard, C., and Rambaud, A. (2001). Hydrogen peroxide production by water electrolysis: application to disinfection. J. of Appl. Electochem., 31, pp. 877-882 https://doi.org/10.1023/A:1017588221369
  16. Knudson, G. B. (1985). Photoreactivation of UV-irradiated Legionella pnemophila and other Legionella species. Appl. Environ. Miceobiol., 18, pp. 75-80
  17. Liu, Z., Stout, J. E., Tedesco, L., Boldin, M., Hwang, C., and Yu, V. L. (1995). Efficacy of ultraviolet light in preventing Legionella colonization of a hospital water distribution system. Wat. Res., 29, pp. 2275-2280 https://doi.org/10.1016/0043-1354(95)00048-P
  18. Matos, J., Laine, J., and Herrmann, J. M. (1999). Association of activated carbons of different origins with titania in the photocatalytic purification of water. Carbon, 37, pp. 1870-1872 https://doi.org/10.1016/S0008-6223(99)00198-0
  19. Muraca, P., Stout, J. E., and Yu, V. L. (1987). Comparative assesment of chlorine, heat, ozone and UV light for killing Legionella pnemophila within a model plumbing system. Appl. Environ. Microbiol., 53, pp. 447-453
  20. Pei, X., Janex, M. L., Savoye P., and Cockx, A. (2002). Wastewater disinfection by ozone: main parameters for process design. Wat. Res., 36, pp. 1043-1055 https://doi.org/10.1016/S0043-1354(01)00298-6
  21. Rosenfeldt, E. J., Linden, K. G., Canonica, S., and von Gunten, U. (2006). Comparison of the efficiency of .OH radical formation during ozonation and the advanced oxidation processes $O_3/H_2O_2$and $UV/H_2O_2$. Wat. Res., 40(20), pp. 3695-3704 https://doi.org/10.1016/j.watres.2006.09.008
  22. Suzuki, H., Sumida, Y., Umezawa, H., Kuwaki, Y., Iseki, M., Takaoka, D., and Yasuda, M. (2004). Electrolytic disinfection system for recycling water with high-performance direct-electrolysis technology. 공동추계학술발표회 논문집, 한국물환경학회.대한상수도학회, pp. 512-515
  23. Wu, J. J., Yang, J. S., Muruganandham, M., and Wu, C. C. (2008). The oxidation study of 2-propanol using ozonebased advanced oxidation processes. Separation and Purification Technology, 62, pp. 39-46 https://doi.org/10.1016/j.seppur.2007.12.018