Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator

생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증

  • Kang, Tae-Ho (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Nguyen, Thanh D.B. (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Lim, Young-Il (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University) ;
  • Kim, Seong-Joon (Department of Environmental Engineering, Kwangwoon University) ;
  • Eom, Won-Hyeon (Department of Environmental Engineering, Kwangwoon University) ;
  • Yoo, Kyung-Seun (Department of Environmental Engineering, Kwangwoon University)
  • 강태호 (한경대학교 화학공학과 화학기술연구소 FACS 연구실) ;
  • 뉘엔 타인 (한경대학교 화학공학과 화학기술연구소 FACS 연구실) ;
  • 임영일 (한경대학교 화학공학과 화학기술연구소 FACS 연구실) ;
  • 김성준 (광운대학교 환경공학과) ;
  • 엄원현 (광운대학교 환경공학과) ;
  • 유경선 (광운대학교 환경공학과)
  • Received : 2008.09.05
  • Accepted : 2009.08.14
  • Published : 2009.10.31

Abstract

A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

생활폐기물 소각장에서 발생되는 질소산화물($NO_x$)을 저감을 위한 요소용액 이용 선택적 무촉매 환원(SNCR: selective non-catalytic reduction) 상용화 공정에 대하여 전산유체역학(CFD: computational fluid dynamics) 모델을 개발하였고, 이 모델은 현장 실험결과로 검증되었다. 저 농도 일산화탄소와 12% 과잉공기 조건에서 요소와 질소산화물간의 7개 화학반응식과 액적의 증발과정을 포함하는 3차원 난류반응 흐름 CFD 모델은 소각로에 설치된 SNCR 공정의 유체역학 모사를 위하여 사용하였다. 본 SNCR 공정에서는 정면 노즐 1개와 측면 노즐 2개를 사용하여 2차 연소로 내에 요소용액을 공기와 함께 분사하였다. 3개의 노즐에 동일유량으로 NSR=1.8에서 요소용액과 공기를 분사할 경우, 출구온도는 현장 실험값과 모사값이 일치하며, 질소산화물 저감효율은 실험에서는 57%, CFD 모사에서는 59%를 보여주었다. 각 노즐 별 분사유량의 비율을 변화하면서 수행된 CFD 모사 결과에서는 3개의 노즐에 동일 유량을 분사하는 것보다 정면 1개 노즐에 측면노즐 유량의 2배를 분사하는 것이 약 8% 높은 질소산화물저감 효율을 보여주었다.

Keywords

Acknowledgement

Supported by : Korea Ministry of Environment

References

  1. Kim, G. Y. and Rlee, G. H., 'Parallel Numerical Analysis of Thermal Flow in Waste Incinerator,' J. Inst. Inf. Technol., 5, 85- 91(2003)
  2. Kim, S. B., Lee, J. W., Kim, H. J., Huh, I. S., 'Flow Characteristics Ananlysis In Accordance with Geometrical Modification of Chamber of Waste Incinerator,' Korean Society Mechanical Engineers, 536-540(1999)
  3. Cremer, M. A., Montgomery, C. J., Wang, D. H., Heap, M. P. and Chen, J.-Y., "Development and Implementation of Reduced Chemistry for Computational Fluid Dynamics Modeling of Selective Non-Catalytic Reduction," Pro. Combustion Institute, 28, 2427- 2434(2000) https://doi.org/10.1016/S0082-0784(00)80656-6
  4. Wendt, J. O. L., Linak, W. P., Groff, P. W. and Srivastava, R. K., "Hybrid SNCR-SCR Technologies for NOx Control: Modeling and Experiment," AIChE J., 47(11), 2603-2617(2001) https://doi.org/10.1002/aic.690471123
  5. Muzio, L. J., Quartucy, G. C. and Cichanowicz, J. E., 'Overview and Status of Post-combustion NOx Control: SNCR, SCR and Hybrid Technologies', Int. J. Environ. Pollut., 17(1/2), 4-30(2002) https://doi.org/10.1504/IJEP.2002.000655
  6. Tayyeb Javed, M., Irfana, N. and Gibbs, B. M., "Control of Com-bustion-generated Nitrogen Oxides by Selective Non-catalytic Reduction," J. Environ. Manag., 83(3), 251-289(2007) https://doi.org/10.1016/j.jenvman.2006.03.006
  7. Lee, J. B. and Kim, S. D., "Kinetics of NOx Reduction by Urea Solution in a Pilot Scale Reactor," J. Chem. Eng. Japan, 29, 620- 626(1996) https://doi.org/10.1252/jcej.29.620
  8. Lim, Y.-I., Yoo, K. S., Jeong, S. M., Kim, S. D., Lee, J. B. and Choi, B. S., 'A Study on NOx Removal from Flue Gas by Using Urea Solution,' Korean Chem. Eng. Res., 35(1), 83-89(1997)
  9. Muzio, L. J. and Quartucy, G. C., "Implementing NOx Control: Research to Application, " Prog. Energy Combust. Sci., 23, 233- 266(1997) https://doi.org/10.1016/S0360-1285(97)00002-6
  10. Alzueta, M. U., Bilbao, R., Millera, A., Oliva, M. and Ibanez, J. C., "Interactions Between Nitric Oxide and Urea under Flow Reactor Conditions," Energy & Fuels, 12, 1001-1007(1998) https://doi.org/10.1021/ef980055a
  11. Gentemann, A. M. G. and Caton, J. A., 'Flow Reactor Experiments on the Selective Non-Catalytic Removal(SNCR) of Nitric Oxide using a Urea-Water Solution,' Proceedings of the 21st German Flame Day Conference, Combustion and Furnaces, University of Cottbus, Germany, 9-10(2003)
  12. Nguyen, T., Kang, T. H., Lim, Y. I., Kim, S. J., Eom, W. H. and Yoo, K. S., 'Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution,' Korean Chem. Eng. Res., 46(5), 922- 930(2008)
  13. Gentemann, A. M. G. and Caton, J. A., 'Decomposition and Oxidation of a Urea-Water Solution as Used in Selective Non- Catalytic Removal (SNCR) Processes,' proceedings of the 2nd Joint Meeting of the United States Sections: The Combustion Institute, Oakland, CA, 25-28 March 2001
  14. Park, J. S., 'A Numerical of the Flow Field for a Secondary Air Effect in a Stoker in a Municipal Solid Waste,' Master Dissertation, Hanbat National Uinv., 5-12(2003)
  15. Park, B. S., Lee, J. W., Kim, S. W. and Kang, S. K., 'A Numerical Study on the Residence Time Distribution on a Combustion Chamber of a MSW Incinerator,' Institute for Advanced Engineering, Daewoo Heavy Industry, Technical Report, 1-3(1999)
  16. Han, X., Wei, X., Schnell, U. and Hein, K. R. G., "Detailed Modeling of Hybrid Reburn/SNCR Processes for NOX Reduction in Coal-fired Furnaces," Combust. Flame, 132(3), 374-386(2003) https://doi.org/10.1016/S0010-2180(02)00481-9
  17. Alonso, D. F., Goncalves, J. A. S., Azzopardi, B. J. and Coury, J. R., "Droplet Size Measurements in Venturi Scrubbers," Chem. Eng. Sci., 56, 4901-4911(2001) https://doi.org/10.1016/S0009-2509(01)00140-3
  18. Miller, J. A. and Bowman, C. T., "Mechanism and Modeling of Nitrogen Chemistry in Combustion, " Prog. Energy Combust. Sci., 15, 287-338(1989) https://doi.org/10.1016/0360-1285(89)90017-8
  19. Brouwer, J., Heap, M. P., Pershing, D. W. and Smith, P. J., 'A Model for Prediction of Selective Non-catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO,' Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Italy, 2117-2124(1996)
  20. Montgomery, C. J., Swensen, D. A., Harding, T. V., Cremer, M. A. and Bockelie, M. J., "A Computational Problem Solving Environment for Creating and Testing Reduced Chemical Kinetic Mechanisms," Adv. Eng. Software, 33(2), 59-70(2002) https://doi.org/10.1016/S0965-9978(01)00054-0
  21. Skjoth-Rasmussen, M. S., Holm-Christensen, O., Ostberg, M., Christensen, T. S., Johannessen, T., Jensen, A. D., Glarborg, P. and Livbjerg, H., 'Post Processing of Detailed Chemical Kinetic Mechanisms onto CFD Simulations,' Comput. Chem. Eng., 28, 2351-2361(2004) https://doi.org/10.1016/j.compchemeng.2004.05.001
  22. Launder, B. E. and Spalding, D. B., Lectures in Mathematical Models of Turbulence, Academic Press: London, England(1972)