은(Ag)의 미생물 불활성화 특성 및 기작

Antimicrobial Activity and Mechanism of Silver

  • 김지연 (서울대학교 화학생물공학부) ;
  • 김태영 (서울대학교 화학생물공학부) ;
  • 윤제용 (서울대학교 화학생물공학부)
  • Kim, Jee Yeon (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Kim, Taeyoung (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • 투고 : 2009.03.18
  • 심사 : 2009.04.26
  • 발행 : 2009.06.10

초록

다양한 미생물에 대하여 높은 불활성화 성능을 지니고 있는 은(Ag)은 최근 환경 기술 분야, 나노 기술 분야 등에서 응용 가능성이 높아 큰 주목을 받고 있으며, 새로운 적용 제품들이 활발하게 연구, 개발되고 있다. 하지만 다양한 응용 연구에도 불구하고 정확한 항균 성능 및 기작에 대한 연구 결과와 이해가 부족하여 관련 연구자와 소비자들에게 논쟁과 혼동을 야기시키고 있다. 본 글에서는 기존 연구를 중심으로 은의 미생물 불활성화 성능과 기작, 다른 항균 물질과의 시너지 효과, 응용 분야 등에 대해서 정리, 검토하여 이에 대한 연구 및 개발에 도움이 되고자 한다.

Recently, there is much interest in the antimicrobial activity of silver since silver has known to be safe and effective as a disinfectant or an antimicrobial agent against a broad spectrum of microorganisms. Although silver has been applied to various kinds of products due to the effective antimicrobial activity, the quantitative antimicrobial activity or detailed mechanism of silver is not clearly investigated yet, causing the controversy and confusion. In this review paper, we summarized the characteristics, antimicrobial activities and mechanisms, synergistic effects with other antimicrobials, and applicability of silver.

키워드

참고문헌

  1. J. Ravelin, Sci. Nat., 11, 93 (1869)
  2. R. L. Woodward, J. Am. Water Resour. Assoc., 55, 881 (1963) https://doi.org/10.1002/j.1551-8833.1963.tb01099.x
  3. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, J. Biomed. Mater. Res. Part A, 52, 662 (2000) https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  4. R. M. E. Richards, Microbios, 31, 83 (1981)
  5. P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. H$\ddot{a}$se, Antimicrob. Agents Chemother., 46, 2668 (2002) https://doi.org/10.1128/AAC.46.8.2668-2670.2002
  6. A. D. Russell and W. B. Hugo, Prog. Med. Chem., 31, 351 (1994) https://doi.org/10.1016/S0079-6468(08)70024-9
  7. C. W. Chambers, C. M. Protor, and P. W. Kabler, J. Am. Water Resour. Assoc., 54, 208 (1962) https://doi.org/10.1002/j.1551-8833.1962.tb00834.x
  8. L. K. Landeen, M. T. Yahya, and C. P. Gerba, Appl. Environ. Microbiol., 55, 3045 (1989)
  9. J. Kim, J. Y. Kim, and J. Yoon, J. of KSEE., 28, 81 (2006)
  10. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, Lett. Appl. Microbiol., 25, 279 (1997) https://doi.org/10.1046/j.1472-765X.1997.00219.x
  11. K. B. Holt and A. J. Bard, Biochemistry, 44, 13214 (2005) https://doi.org/10.1021/bi0508542
  12. H. Park, J. Y. Kim, J. Kim, J. Lee, J. Hahn, M. B. Gu, and J. Yoon, Water Res., 43, 1027 (2009) https://doi.org/10.1016/j.watres.2008.12.002
  13. R. M. Izatt, J. J. Christensen, and H. Rytting, Chem. Rev., 71, 439 (1971) https://doi.org/10.1021/cr60273a002
  14. H. Arakawa, J. F. Neault, and H. A. Tajmir-Riahi, Biophys. J., 81, 1580 (2001) https://doi.org/10.1016/S0006-3495(01)75812-2
  15. R. Pedahzur, O. Lev, B. Fattal, and H. I. Shuval, Water Sci. Technol., 31, 123 (1995) https://doi.org/10.1016/0273-1223(95)00252-I
  16. R. Pedahzur, H. I. Shuval, and S. Ulitzur, Water Sci. Technol., 35, 87 (1997) https://doi.org/10.1016/S0273-1223(97)00240-0
  17. M. A. Butkus, M. P. Labare, J. A. Starke, K. Moon, and M. Talbot, Appl. Environ. Microbiol., 70, 2848 (2004) https://doi.org/10.1128/AEM.70.5.2848-2853.2004
  18. R. O. Rahn, J. K. Setlow, and L. C. Landry, Photochem. Photobiol., 18, 39 (1973) https://doi.org/10.1111/j.1751-1097.1973.tb06390.x
  19. J. Y. Kim, C. Lee, M. Cho, and J. Yoon, Water Res., 42, 356 (2008) https://doi.org/10.1016/j.watres.2007.07.024
  20. J. Kim, M. Cho, B. Oh, S. Choi, and J. Yoon, Chemosphere, 55, 775 (2004) https://doi.org/10.1016/j.chemosphere.2003.11.014
  21. M. T. Yahya, T. M. Straub, and C. P. Gerba, Can. J. Microbiol., 38, 430 (1992) https://doi.org/10.1139/m92-072
  22. C. W. Beer, L. E. Guilmartin, T. F. McLoughlin, and T. J. White, J. Environ. Health, 61, 9 (1991)
  23. J. I. Greenfeld, L. Sampath, S. J. Popilskis, S. R. Brunnert, S. Stylianos, and S. Modak, Crit. Care Med., 23, 894 (1995) https://doi.org/10.1097/00003246-199505000-00018
  24. Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T. Murata, Y. Kanzaki, H. Hamashima, and M. Sasatsu, J. Inorg. Biochem., 92, 37 (2002) https://doi.org/10.1016/S0162-0134(02)00489-0
  25. Y. Matsumura, K. Yoshikata, S. Kunisaki, and T. Tsuchido, Appl. Environ. Microbiol., 69, 4278 (2003) https://doi.org/10.1128/AEM.69.7.4278-4281.2003
  26. B. Galeano, E. Korff, and W. L. Nicholson, Appl. Environ. Microbiol., 69, 4329 (2003) https://doi.org/10.1128/AEM.69.7.4329-4331.2003
  27. N. Simonetti, G. Simonetti, F. Bougnol, and M. Scalzo, Appl. Environ. Microbiol., 58, 3834 (1992)
  28. S. S. Martinez, A. A. Gallegos, and E. Martinez, Int. J. Hydrog. Energy, 29, 921 (2004) https://doi.org/10.1016/j.ijhydene.2003.06.002
  29. W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim, and Y. H. Park, Appl. Environ. Microbiol., 74, 2171 (2008) https://doi.org/10.1128/AEM.02001-07
  30. U. Klueh, V. Wagner, S. Kelly, A. Johnson, and J. D. Bryers, J. Biomed. Mater. Res. Part B, 53, 621 (2000) https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
  31. T. N. Kim, Q. L. Feng, J. O. Kim, J. Wu, H, Wang, G. C. Chen, and F. Z. Cui, J. Mater. Sci.-Mater. Med., 9, 129 (1998) https://doi.org/10.1023/A:1008811501734
  32. S. A. Jones, P. G. Bowler, M. Walker, and D. Parsons, Wound Repair Regen., 12, 288 (2004) https://doi.org/10.1111/j.1067-1927.2004.012304.x
  33. E. A. Deitch, A. A. Marino, T. E. Gillespie, and J. A. Albright, Antimicrob. Agents Chemother., 23, 356 (1983) https://doi.org/10.1128/AAC.23.3.356
  34. Y. Jeong, Y. Shin, and H. Baek, J. Korean Acad. Dent. Health, 22, 347 (1998)
  35. H. Kang, M. Jung, and Y. Jeong, Korean J. Biotechnol. Bioeng., 15, 521 (2000)
  36. I. Sondi and B. S. Sondi, J. Colloid Interface Sci., 275, 177 (2004) https://doi.org/10.1016/j.jcis.2004.02.012
  37. S. K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S. S. Ghosh, and A. Chattopadhyay, Langmuir, 22, 9322 (2006) https://doi.org/10.1021/la060661v
  38. S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007) https://doi.org/10.1128/AEM.02218-06
  39. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotechnology, 16, 2345 (2005)
  40. O. O. Choi and Z. Hu, Environ. Sci. Technol., 42, 4583 (2008) https://doi.org/10.1021/es703238h
  41. K. Cho, J. Park, T. Osaka, and S. Park, Electrochim. Acta, 51, 956 (2005) https://doi.org/10.1016/j.electacta.2005.04.071
  42. V. K. Sharma, R. A. Yngard, and Y. Lin, Adv. Colloid. Interfac., 145, 83 (2009) https://doi.org/10.1016/j.cis.2008.09.002
  43. G. A. Martínez-Casta$\tilde{n}$$\acute{o}$n, N. Ni$\tilde{n}$o-Mart$\acute{i}$nez, F. Mart$\acute{i}$nez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz, J. Nanopart. Res., 10, 1343 (2008) https://doi.org/10.1007/s11051-008-9428-6
  44. J. Y. Kim, S. Kim, J. Kim, J. Lee, and J. Yoon, J. of KSEE., 27, 771 (2005)
  45. C. Lok, C. Ho, R. Chen, Q. He, W. Yu, H. Sun, P. K. Tam, J. Chiu, and C. Che, J. Proteome Res., 5, 916 (2006) https://doi.org/10.1021/pr0504079
  46. R. Kumar and H. M$\ddot{u}$nstedt, Biomaterials, 26, 2081 (2005) https://doi.org/10.1016/j.biomaterials.2004.05.030
  47. C. Radheshkumar and H. M$\ddot{u}$nstedt, React. Funct. Polym., 60, 780 (2006) https://doi.org/10.1016/j.reactfunctpolym.2005.11.005
  48. R. L. Davis and S. F. Etris, Catal. Today, 36, 107 (1997) https://doi.org/10.1016/S0920-5861(96)00203-9
  49. P. Li, J. Li, C. Wu, Q. Wu, and J. Li, Nanotechnology, 16, 1912 (2005) https://doi.org/10.1088/0957-4484/16/9/082
  50. P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang, Nanotechnology, 18, 1 (2007)
  51. K. Y. Choi, S. Kim, J. Y. Kim, J. Yoon, and J. Lee, J. Nanosci. Nanotechnol., 8, 1 (2008) https://doi.org/10.1166/jnn.2008.N03
  52. L. Balogh, D. R. Swanson, D. A. Tomalia, G. L. Hagnauer, and A. T. McManus, Nano Lett., 1, 18 (2001) https://doi.org/10.1021/nl005502p
  53. S. Y. Yeo, H. J. Lee, and S. H. Jeong, J. Mater. Sci., 38, 2143 (2003) https://doi.org/10.1023/A:1023767828656
  54. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Winship, and H. J. Reid, J. Antimicrob. Chemother., 54, 1019 (2004) https://doi.org/10.1093/jac/dkh478
  55. C. Chou, S. Hsu, H Chang, S. Tseng, and H. Lin, Polym. Degrad. Stabil., 91, 1017 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.08.001
  56. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, Nat. Mater., 7, 236 (2008) https://doi.org/10.1038/nmat2099
  57. K. Y. Yoon, J. H. Byeon, C. W. Park, and J. Hwang, Environ. Sci. Technol., 42, 1251 (2008) https://doi.org/10.1021/es0720199
  58. V. A. Oyanedel-craver and J. A. Smith, Environ. Sci. Technol., 42, 927 (2008) https://doi.org/10.1021/es071268u
  59. C. H. Ho, J. Tobis, C. Sprich, R. Thomann, and J. C. Tiller, Adv. Mater., 16, 957 (2004) https://doi.org/10.1002/adma.200306253
  60. U. Samuel and J. P. Guggenbichler, Int. J. Antimicrob. Agents, 23S1, S75 (2004) https://doi.org/10.1016/j.ijantimicag.2003.12.004
  61. P. Jain and T. Pradeep, Biotechnol. Bioeng., 90, 59 (2005) https://doi.org/10.1002/bit.20368
  62. C. Aymonier, U. Schlotterbeck, L. Antonietti, P. Zacharias, R. Thomann, J. C. Tiller, and S. Mecking, Chem. Commun., 3018 (2002) https://doi.org/10.1039/b208575e
  63. D. Lee, R. E. Cohen, and M. F. Rubner, Langmuir, 21, 9651 (2005) https://doi.org/10.1021/la0513306
  64. S. B. Sant, K. S. Gill, and R. E. Burrell, Scr. Mater., 41, 1333 (1999) https://doi.org/10.1016/S1359-6462(99)00294-8
  65. S. B. Sant, K. S. Gill, and R. E. Burrell, Acta Biomater., 3, 341 (2007) https://doi.org/10.1016/j.actbio.2006.10.008
  66. M. S$\ddot{o}$kmen, F. Candan, and Z. S$\ddot{u}$mer, J. Photochem. Photobiol. A-Chem., 143, 241 (2001) https://doi.org/10.1016/S1010-6030(01)00497-X
  67. S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, Catal. Today, 93, 877 (2004) https://doi.org/10.1016/j.cattod.2004.06.097
  68. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, J. Photochem. Photobiol. A-Chem., 148, 233 (2002) https://doi.org/10.1016/S1010-6030(02)00049-7