DOI QR코드

DOI QR Code

Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats

  • Zhao, X.G. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Wang, M. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Tan, Z.L. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Tang, S.X. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Sun, Z.H. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Zhou, C.S. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences) ;
  • Han, X.F. (Key Laboratory of Agro-ecological Processes in Subtropical Region, Huanjiang Observation & Research Station of Karst Agro-ecosystem, Institute of Subtropical Agriculture, the Chinese Academy of Sciences)
  • Received : 2008.12.04
  • Accepted : 2009.04.04
  • Published : 2009.09.01

Abstract

Effects of particle size and physical effective fibre (peNDF) of rice straw in diets on chewing activities, feed intake, flow, site and extent of digestion and rumen fermentation in goats were investigated. A 4${\times}$4 Latin square design was employed using 4 mature Liuyang black goats fitted with permanent ruminal, duodenal, and terminal ileal fistulae. During each of the 4 periods, goats were offered 1 of 4 diets that were similar in nutritional content but varied in particle sizes and peNDF through alteration of the theoretical cut length of rice straw (10, 20, 40, and 80 mm, respectively). Dietary peNDF contents were determined using a sieve for particle separation above 8 mm, and were 17.4, 20.9, 22.5 and 25.4%, respectively. Results showed that increasing the particle size and peNDF significantly (p<0.05) increased the time spent on rumination and chewing activities, duodenal starch digestibility and ruminal pH, and decreased ruminal starch digestibility and $NH_{3}$-N concentration. Intake and total tract digestibility of nutrients (i.e. dry matter, organic matter, and starch) and ruminal fermentation were not affected by the dietary particle size and peNDF. Increased particle size and peNDF did not affect ruminal fibre digestibility, but had a great impact on the intestinal and total tract fibre digestibility. The study suggested that rice straw particle size or dietary peNDF was the important influential factor for chewing activity, intestinal fibre and starch digestibility, and ruminal pH, but had minimal impact on feed intake, duodenal and ileal flow, ruminal and total tract digestibility, and ruminal fermentation.

Keywords

References

  1. Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447-1462 https://doi.org/10.3168/jds.S0022-0302(97)76074-0
  2. Allen, M. S. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 83:1598-1624 https://doi.org/10.3168/jds.S0022-0302(00)75030-2
  3. AOAC. 2002. Official methods of analysis. Association of Official Analytical Chemists. 16th Edition edition, Washington, DC
  4. Armentano, L. and M. Pereira. 1997. Measuring the effectiveness of fiber by animal response trials. J. Dairy Sci. 80:1416-1425 https://doi.org/10.3168/jds.S0022-0302(97)76071-5
  5. Bae, D. H., J. G. Welch and A. M. Smith. 1979. Forage intake and rumination by sheep. J. Anim. Sci. 49:1292-1299
  6. Beauchemin, K. A. and W. Z. Yang. 2005. Effects of physically effective fiber on intake, chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. J. Dairy Sci. 88:2117-2129 https://doi.org/10.3168/jds.S0022-0302(05)72888-5
  7. Beauchemin, K. A., W. Z. Yang and L. M. Rode. 2003. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production. J. Dairy Sci. 86:630-643 https://doi.org/10.3168/jds.S0022-0302(03)73641-8
  8. Galyean, M. L. and P. J. Defoor. 2003. Effects of roughage source and level on intake by feedlot cattle. J. Anim. Sci. 81:E8-16
  9. Jaster, E. H. and M. R. Murphy. 1983. Effects of varying particle size of forage on digestion and chewing behavior of dairy heifers. J. Dairy Sci. 66:802-810 https://doi.org/10.3168/jds.S0022-0302(83)81860-8
  10. Kononoff, P. J. and A. J. Heinrichs. 2003. The effect of corn silage particle size and cottonseed hulls on cows in early lactation. J. Dairy Sci. 86:2438-2451 https://doi.org/10.3168/jds.S0022-0302(03)73838-7
  11. Kononoff, P. J., A. J. Heinrichs and H. A. Lehman. 2003. The effect of corn silage particle size on eating behavior, chewing activities, and rumen fermentation in lactating dairy cows. J. Dairy Sci. 86:3343-3353 https://doi.org/10.3168/jds.S0022-0302(03)73937-X
  12. Krause, K. M., D. K. Combs and K. A. Beauchemin. 2002a. Effects of forage particle size and grain fermentability in midlactation cows. I. Milk production and diet digestibility. J. Dairy Sci. 85:1936-1946 https://doi.org/10.3168/jds.S0022-0302(02)74270-7
  13. Krause, K. M., D. K. Combs and K. A. Beauchemin. 2002b. Effects of forage particle size and grain fermentability in midlactation cows. II. Ruminal pH and chewing activity. J. Dairy Sci. 85:1947-1957 https://doi.org/10.3168/jds.S0022-0302(02)74271-9
  14. Krause, K. M. and G. R. Oetzel. 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 126 215-236 https://doi.org/10.1016/j.anifeedsci.2005.08.004
  15. Leonardi, C., K. J. Shinners and L. E. Armentano. 2005. Effect of different dietary geometric mean particle length and particle size distribution of oat silage on feeding behavior and productive performance of dairy cattle. J. Dairy Sci. 88:698-710 https://doi.org/10.3168/jds.S0022-0302(05)72734-X
  16. Lu, C. D., J. R. Kawas and O. G. Mahgoub. 2005. Fibre digestion and utilization in goats. Small Rumin. Res. 60:45-52 https://doi.org/10.1016/j.smallrumres.2005.06.035
  17. Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481 https://doi.org/10.3168/jds.S0022-0302(97)76075-2
  18. Moon, Y. H., S. C. Lee and Sung S. Lee. 2004. Effects of neutral detergent fiber concentration and particle size of the diet on chewing activities of dairy cows. Asian-Aust. J. Anim. Sci. 17:1535-1540
  19. Olubobokun, J. A., W. M. Craig and W. A. Nipper. 1988. Characteristics of protozoal and bacterial fractions from microorganisms associated with ruminal fluid or particles. J. Anim. Sci. 66:2701-2710 https://doi.org/10.3168/jds.2009-2273
  20. Plaizier, J. C., D. O. Krause, G. N. Gozho and B. W. McBride. 2008. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 176:21-31 https://doi.org/10.1016/j.tvjl.2007.12.016
  21. Remond, D., J. I. Cabrera-Estrada, M. Champion, B. Chauveau, R. Coudure and C. Poncet. 2004. Effect of corn particle size on site and extent of starch digestion in lactating dairy cows. J. Dairy Sci. 87:1389-1399 https://doi.org/10.3168/jds.S0022-0302(04)73288-9
  22. Reid, R. L., G. A. Jung, J. M. Cox-Ganser, B. F. Rybeck and E. C. Townsend. 1990. Comparative utilization of warm- and coolseason forages by cattle, sheep and goats. J. Anim. Sci. 68:2986-2994
  23. Santini, F. J., C. D. Lu, M. J. Potchoiba, J. M. Fernandez and S. W. Coleman. 1992 Dietary fibre and milk yield, mastication, digestion and rate of passage in high Alpine goats fed alfalfa hay. J. Dairy Sci. 75:209-219 https://doi.org/10.3168/jds.S0022-0302(92)77755-8
  24. Schwab, E. C., R. D. Shaver, K. J. Shinners, J. G. Lauer and J. G. Coors. 2002. Processing and chop length effects in brownmidrib corn silage on intake, digestion, and milk production by dairy cows. J. Dairy Sci. 85:613-623 https://doi.org/10.3168/jds.S0022-0302(02)74115-5
  25. Shaver, R. D., A. J. Nytes, L. D. Satter and N. A. Jorgensen. 1986. Influence of amount of feed and forage physical form on digestion and passage of prebloom alfalfa hay in dairy cows. J. Dairy Sci. 69:1545-1559 https://doi.org/10.3168/jds.S0022-0302(86)80571-9
  26. Soita, H. W., M. Fehr, D. A. Christensen and T. Mutsvangwa. 2005. Effects of corn silage particle length and forage:concentrate ratio on milk fatty acid composition in dairy cows fed supplemental flaxseed. J. Dairy Sci. 88:2813-2819 https://doi.org/10.3168/jds.S0022-0302(05)72961-1
  27. Sunagawa, K., T. Ooshiro, N. Nakamura, Y. Ishii, I. Nagamine and A Shinjo. 2007a. Physiological factors depressing feed intake and saliva secretion in goats fed on dry forage. Asian-Aust. J. Anim. Sci. 20:60-69
  28. Sunagawa, K., T. Ooshiro, N. Nakamura, Y. Ishii, I. Nagamine and A Shinjo. 2007b. Mechanisms controlling feed intake in largetype goats fed on dry forage. Asian-Aust. J. Anim. Sci. 20:1182-1189
  29. Tafaj, M., Q. Zebeli, C. Baes, H. Steingass and W. Drochner. 2007. A meta-analysis examining effects of particle size of total mixed rations on intake, rumen digestion and milk production in high-yielding dairy cows in early lactation. Anim. Feed Sci. Technol. 138:137-161 https://doi.org/10.1016/j.anifeedsci.2007.06.020
  30. Tafaj, M., Q. Zebeli, B. Junck, H. Steingass and W. Drochner. 2005a. Effects of particle size of a total mixed ration on in vivo ruminal fermentation patterns and inocula characteristics used for in vitro gas production. Anim. Feed Sci. Technol. 123-124, 139-154
  31. Tafaj, M., V. Kolaneci, B. Junck, A. Maulbetsch, H. Steingass and W. Drochner. 2005b. Influence of fiber content and concentrate level on chewing activity, ruminal digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Aust. J. Anim. Sci. 18:1116-1124
  32. Tan, Z. L., D. X. Lu, M. Hu, W. Y. Niu, C. Y. Han, X. P. Ren, R. Na and S. L. Lin. 2001. Effects of dietary nitrogen sources on fiber digestion and ruminal fluid characteristics in sheep fed wheat straw. Asian-Aust. J. Anim. Sci. 14:1374-1382
  33. Tan, Z. L., D. X. Lu, M. Hu, W. Y. Niu, C. Y. Han, X. P. Ren, R. Na and S. L. Lin. 2002. Effect of dietary structural to nonstructural carbohydrate ratio on rumen degradability and digestibility of fiberfractions of wheat straw in sheep. Asian-Aust. J. Anim. Sci. 15:1591-1598
  34. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Symposium: carbohydrate methodology, metabolism and nutritional implications in dairy cattle. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  35. Williams, C. H., D. J. David and O. Lismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385 https://doi.org/10.1017/S002185960001546X
  36. Woodford, S. T. and M. R. Murphy. 1988. Effect of forage physical form on chewing activity, dry matter intake, and rumen function of dairy cows in early lactation. J. Dairy Sci. 71:674-686 https://doi.org/10.3168/jds.S0022-0302(88)79606-X
  37. Yang, W. Z. and K. A. Beauchemin. 2005. Effects of physically effective fiber on digestion and milk production by dairy cows fed diets based on corn silage. J. Dairy Sci. 88:1090-1098 https://doi.org/10.3168/jds.S0022-0302(05)72776-4
  38. Yang, W. Z. and K. A. Beauchemin. 2006a. Effects of physically effective fiber on chewing activity and ruminal pH of dairy cows fed diets based on barley silage. J. Dairy Sci. 89:217-228 https://doi.org/10.3168/jds.S0022-0302(06)72086-0
  39. Yang, W. Z. and K. A. Beauchemin. 2006b. Increasing the physically effective fiber content of dairy cow diets may lower efficiency of feed use. J. Dairy Sci. 89:2694-2704 https://doi.org/10.3168/jds.S0022-0302(06)72345-1
  40. Yang, W. Z. and K. A. Beauchemin. 2006c. Physically effective fiber: method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. J. Dairy Sci. 89:2618-2633 https://doi.org/10.3168/jds.S0022-0302(06)72339-6
  41. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2000. Effects of barley grain processing on extent of digestion and milk production of lactating cows1. J. Dairy Sci. 83:554-568 https://doi.org/10.3168/jds.S0022-0302(00)74915-0
  42. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2001a. Barley processing, forage:concentrate, and forage length effects on chewing and digesta passage in lactating cows. J. Dairy Sci. 84:2709-2720 https://doi.org/10.3168/jds.S0022-0302(01)74725-X
  43. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2001b. Effects of grain processing, forage to concentrate patio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 84:2203-2216 https://doi.org/10.3168/jds.S0022-0302(01)74667-X
  44. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2002. Effects of particle size of alfalfa-based dairy cow diets on site and extent of digestion. J. Dairy Sci. 85:1958-1968 https://doi.org/10.3168/jds.S0022-0302(02)74272-0
  45. Yansari, A. T., R. Valizadeh, A. Naserian, A. Christensen, P. Yu and F. E. Shahroodi. 2004. Effects of alfalfa particle size and specific gravity on chewing activity, digestibility, and performance of Holstein dairy cows. J. Dairy Sci. 87:3912-3924 https://doi.org/10.3168/jds.S0022-0302(04)73530-4
  46. Zebeli, Q., M. Tafaj, H. Steingass, B. Metzler and W. Drochner. 2006. Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. J. Dairy Sci. 89:651-668 https://doi.org/10.3168/jds.S0022-0302(06)72129-4
  47. Zebeli, Q., M. Tafaj, I. Weber, J. Dijkstra, H. Steingass and W. Drochner. 2007. Effects of varying dietary forage particle size in two concentrate levels on chewing activity, ruminal mat characteristics, and passage in dairy cows. J. Dairy Sci. 90:1929-1942 https://doi.org/10.3168/jds.2006-354
  48. Zebeli, Q., M. Tafaj, I. Weber, H. Steingass and W. Drochner. 2008. Effects of dietary forage particle size and concentrate level on fermentation profile, in vitro degradation characteristics and concentration of liquid- or solid-associated bacterial mass in the rumen of dairy cows. Anim. Feed Sci. Technol. 140:307-325 https://doi.org/10.1016/j.anifeedsci.2007.04.002
  49. Zhao, X. G., H. L. Jiang, Z. H. Sun, S. X. Tang, C. S. Zhou, Z. H. Cong, G. O. Tayo and Z. L. Tan. 2007. Effect of rice straw in the diet for growing goats on site and extent of digestion and N balance. J. Anim. Feed Sci. Technol. 16:379-388

Cited by

  1. Effects of rice straw particle size on digesta particle size distribution, nitrogen metabolism, blood biochemical parameters, microbial amino acid composition and intestinal amino acid digestibility in goats vol.82, pp.1, 2010, https://doi.org/10.1111/j.1740-0929.2010.00809.x
  2. Effects of the dietary ratio of ruminal degraded to undegraded protein and feed intake on intestinal flows of endogenous nitrogen and amino acids in goats vol.69, pp.6, 2015, https://doi.org/10.1080/1745039X.2015.1093872
  3. The use of cassava leaf silage as a substitute for concentrate feed in sheep vol.48, pp.7, 2016, https://doi.org/10.1007/s11250-016-1107-5
  4. Effects of Increasing Level of Dietary Rice Straw on Chewing Activity, Ruminal Fermentation and Fibrolytic Enzyme Activity in Growing Goats vol.23, pp.8, 2009, https://doi.org/10.5713/ajas.2010.90412
  5. Effect of Mineral Salt Blocks Containing Sodium Bicarbonate or Selenium on Ruminal pH, Rumen Fermentation and Milk Production and Composition in Crossbred Dairy Cows vol.8, pp.12, 2009, https://doi.org/10.3390/vetsci8120322