DOI QR코드

DOI QR Code

Bacterial Communities Developing during Composting Processes in Animal Manure Treatment Facilities

  • Yamamoto, Nozomi (Laboratory of Sustainable Environmental Biology, Tohoku University) ;
  • Otawa, Kenichi (Laboratory of Sustainable Environmental Biology, Tohoku University) ;
  • Nakai, Yutaka (Laboratory of Sustainable Environmental Biology, Tohoku University)
  • 투고 : 2008.12.01
  • 심사 : 2009.02.21
  • 발행 : 2009.06.01

초록

We analyzed succession of the bacterial communities during composting of animal manure in three individual facilities. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) targeting for the bacterial 16S rRNA gene were used to clarify the changes of bacterial community throughout each composting process. Our study revealed that the bacterial community structures differed during the composting process. The bacterial community in composting of facility A showed little change throughout the process. In the compost sample from facility B, its community had a small shift as the temperature increased. In compost from facility C, the temperature dynamically changed; it was shown that various bacterial communities appeared and disappeared as follows: in the initial phase, the members of phylum Bacteroidetes dominated; in the thermophilic phase, some bacteria belonging to phylum Firmicutes increased; towards the end, the community structure consisted of three phyla, Bacteroidetes, Firmicutes, and Proteobacteria. This study provides some information about the bacterial community actually present in field-scale composting with animal manure.

키워드

참고문헌

  1. Arbeli, Z. and C. L. Fuentes. 2007. Improved purification and PCR amplification of DNA from environmental samples. FEMS Microbiol. Lett., 272:269-275 https://doi.org/10.1111/j.1574-6968.2007.00764.x
  2. Asano, R., T. Sasaki and Y. Nakai. 2007. Isolation and characterization of sulfur oxidizing bacteria from cattle manure compost. Anim. Sci. J. 78:330-333 https://doi.org/10.1111/j.1740-0929.2007.00443.x
  3. Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer and M. Aragno. 1996. Isolation of thermus strains from hot composts (60 to 80${^{\circ}C}$). Appl. Environ. Microbiol. 62:1723-1727
  4. Dees, P. M. and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35:207-216 https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  5. Green, S. J., F. C. Michel Jr., Y. Hadar and D. Minz. 2004. Similarity of bacterial communities in sawdust- and strawamended cow manure composts. FEMS Microbiol. Lett. 233: 115-123 https://doi.org/10.1016/j.femsle.2004.01.049
  6. Insam, H., N. Riddech and S. Klammer. 2002. Microbiology of composting. Springer Science+Business Media, Berlin, Germany
  7. Ishii, K., M. Fukui and S. Takii. 2000. Microbial succession during a composting process as evaluated by denaturing gel electrophoresis analysis. J. Appl. Microbiol. 89:768-777 https://doi.org/10.1046/j.1365-2672.2000.01177.x
  8. Haga, K. 1999. Development of composting technology in animal waste treatment. Asian-Aust. J. Anim. Sci. 12:604-606
  9. Hall, J. E. 1999. Nutrient recycling: the European experience. Asian-Aust. J. Anim. Sci. 12:667-674
  10. Harada, Y. 1992. Composting and land application of animal wastes. Asian-Aust. J. Anim. Sci. 5:113-121
  11. Kaku, K., A. Ikeguchi, A. Ogino, T. Osada, M. Hojito and K. Shimada. 2004. Achieving a nitrogen balance for Japanese domestic livestock waste: testing the scenario of planting feed grain in land left fallow. Asian-Aust. J. Anim. Sci. 17:1026-1032
  12. Kowalchuk, G. A., Z. S. Naoumenko, P. J. L. Derikx, A. Felske, J. R. Stephen and I. A. Arkhipchenko. 1999. Molecular analysis of ammonia-oxidizing bacteria of the $\beta$ subdivision of the Class proteobacteria in compost and composted materials. Appl. Environ. Microbiol. 65:396-403
  13. Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700
  14. Ozutsumi Y., H. Hayashi, M. Sakamoto, H. Itabashi and Y. Benno. 2005. Culture-independent analysis of fecal microbiota in cattle. Biosci. Biotechnol. Biochem. 69:1793-1797 https://doi.org/10.1271/bbb.69.1793
  15. Pedoro, M. S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter. J. Biosci. Bioeng. 2:159-165 https://doi.org/10.1016/S1389-1723(01)80273-5
  16. Sasaki, H., J. Nonaka, K. Otawa, O. Kitazume, R. Asano, T. Sasaki and Y. Nakai. 2009. Analysis of the structure of the bacterial community in the livestock manure-based composting process. Asian-Aust. J. Anim. Sci. 22:113-118
  17. Schloss, P. D., A. G. Hay, D. B. Wilson and L. P. Walker. 2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 46:1-9 https://doi.org/10.1016/S0168-6496(03)00153-3
  18. Taiganides, E. P. 1977. Composting of feedlot wastes. In: Animal wastes (Ed. E. P. Taiganides). Applied Science Publishers Ltd., Essex, England. pp. 241-252
  19. Takaku, H., S. Kodaira, A. Kimoto, M. Nashimoto and M. Takagi. 2006. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and - independent approaches (Environmental Biotechnology). J. Biosci. Bioeng. 101:42-50 https://doi.org/10.1263/jbb.101.42
  20. Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe. 4:153-163 https://doi.org/10.1006/anae.1998.0155
  21. Wiegel, J., R. Tanner and F. A. Rainey. 2006. An introduction to the family clostridiaceae. In: Prokaryotes Third Edition, volume 4 (Ed. M. Dworkin, D. Falkow, E. Rosenberg, K. H. Dchleifer and E. Stackebgandt). Springer Science+Business Media, LLC, New York, USA. pp. 654-678

피인용 문헌

  1. Microbiology of nitrogen cycle in animal manure compost vol.4, pp.6, 2011, https://doi.org/10.1111/j.1751-7915.2010.00236.x
  2. Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis vol.90, pp.4, 2011, https://doi.org/10.1007/s00253-011-3153-2
  3. Targeted 16S rRNA high-throughput sequencing to characterize microbial communities during composting of livestock mortalities vol.116, pp.5, 2014, https://doi.org/10.1111/jam.12449
  4. Comparative Study on the Performances and Bacterial Diversity from Anaerobic Digestion and Aerobic Composting in Treating Solid Organic Wastes vol.8, pp.2, 2017, https://doi.org/10.1007/s12649-016-9572-7
  5. An Overview of the Control of Bacterial Pathogens in Cattle Manure vol.13, pp.9, 2016, https://doi.org/10.3390/ijerph13090843
  6. Genetic Analysis and In Vitro Enzymatic Determination of Bacterial Community in Compost Teas from Different Sources pp.2326-2397, 2018, https://doi.org/10.1080/1065657X.2018.1496045
  7. Microbial diversity and nitrogen-metabolizing gene abundance in backyard food waste composting systems vol.125, pp.4, 2018, https://doi.org/10.1111/jam.13945
  8. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years pp.1614-7480, 2019, https://doi.org/10.1007/s11368-019-02258-x
  9. Microbial Community Succession and Response to Environmental Variables During Cow Manure and Corn Straw Composting vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.00529
  10. Bacterial community succession in dairy manure composting with a static composting technique vol.65, pp.6, 2019, https://doi.org/10.1139/cjm-2018-0560
  11. Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content vol.737, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.139842
  12. Changes in the Composition of the Soil Bacterial Community in Heavy Metal-Contaminated Farmland vol.18, pp.16, 2009, https://doi.org/10.3390/ijerph18168661