DOI QR코드

DOI QR Code

Isolation and characterization of a novel short-chain alcohol dehydrogenase gene from Panax ginseng

  • Kim, Yu-Jin (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Shim, Ju-Sun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Jung-Hye (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Jung, Dae-Young (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Sun, Hwa (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • In, Jun-Gyo (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University)
  • Published : 2009.10.31

Abstract

The cDNA of alcohol dehydrogenase (PgADH) was isolated and characterized from the leaf of Panax ginseng. The cDNA had an open reading frame of 801 bp and a deduced amino acid sequence of 266 residues. The calculated molecular mass of the mature protein is approximately 29 kDa with a predicated isoelectric point of 6.84. Homology analysis revealed that the deduced amino acid of PgADH shares a high degree of homology with the short-chain ADH proteins of other plants. Genomic DNA hybridization analysis indicated that PgADH represents a multi-gene family. The expression of PgADH under various environmental stresses was analyzed at different time points using real-time PCR. ABA, SA and especially JA (80-fold) significantly induced PgADH expression within 24 h of treatment. The positive responses of PgADH to abiotic stimuli suggest that ginseng ADH may protect against hormone-related environmental stresses.

Keywords

References

  1. Chang, G. and Meyerowitz, E. M. (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc. Natl. Acad. Sci. U.S.A. 83, 1408-1412 https://doi.org/10.1073/pnas.83.5.1408
  2. Dolferus, R., Jacob, M., Peacock, W. J. and Dennis, E. S. (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 105, 1075-1087 https://doi.org/10.1104/pp.105.4.1075
  3. Matton, D. P., Constabel, P. and Brisson, N. (1990) Alcohol dehydrogenase gene expression in potato following elicitor and stress treatment. Plant Mol. Biol. 14, 775-783 https://doi.org/10.1007/BF00016510
  4. Christie, P. J., Hahn, M. and Walbot, V. (1991) Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol. 95, 699-706 https://doi.org/10.1104/pp.95.3.699
  5. Sedbrook, J. C., Kronebusch, P. J., Borisy, G. G., Trewavas, A. J. and Masson, P. H. (1996) Transgenic aequorin reveals organ-specific cytosolic $Ca^{2+}$reponses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol. 111, 243-257 https://doi.org/10.1104/pp.111.1.243
  6. Zhu, J. K., Hasegawa, P. M. and Bressan, R. A. (1997) Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci. 16, 253-277 https://doi.org/10.1080/713608147
  7. Nordling, E., Jornvall, H. and Persson, B. (2002) Mediumchain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur. J. Biochem. 269, 4267-4276 https://doi.org/10.1046/j.1432-1033.2002.03114.x
  8. Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez- Duarte, R., Jeffery, J. and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochem. 34, 6003-6013 https://doi.org/10.1021/bi00018a001
  9. Persson, B., Krook, M. and Jornvall, H. (1991) Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200, 537-543 https://doi.org/10.1111/j.1432-1033.1991.tb16215.x
  10. Jornvall, H., Persson, M. and Jeffery, J. (1981) Alcohol and polyol dehydrogenase are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc. Natl. Acad. Sci. U.S.A 78, 4226-4230 https://doi.org/10.1073/pnas.78.7.4226
  11. Benyajati, C., Place, A. R., Powers, D. A. and Sofer, W. (1981) Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. Proc. Natl. Acad. Sci. U.S.A. 78, 2717-2721 https://doi.org/10.1073/pnas.78.5.2717
  12. Theodore Chase, J. R. (1999) Alcohol dehydrogenases: Identification and names for gene families. Plant Mol. Biol. Rep. 17, 333-350 https://doi.org/10.1023/A:1007620627083
  13. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy Server; The Proteomics Protocols Handbook; in John M. Walker (ed.), pp. 571-607, Humana Press, Totowa, NJ
  14. Manrizuez, D., El-Sharkawy, I., Flores, F. B., El-Yahyaoui, F., Regad, F., Bouzayen, M., Latche, A. L. and Pech, J. C. (2006) Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics. Plant Mol. Biol. 61, 675- 685 https://doi.org/10.1007/s11103-006-0040-9
  15. Oppermann, U., Filling, C., Fult, M., Shafqat, N., Wu, X., Lindh, M., Shafqat, J., Nordling, E., Kallberg, Y., Persson, B. and Jornvall, H. (2003) Short- chain denyhdrogenases/reductases (SDR): the 2002 update. Chembioint. 143-144, 247-253
  16. Gottlieb, L. D. (1982) Conservation and duplication of isozymes in plants. Science 216, 373-380 https://doi.org/10.1126/science.216.4544.373
  17. Brosche, M. and Strid, A. (1986) Cloning, expression, and molecular characterization of a small pea gene family regulated by low levels of ultraviolet B radiation and other stresses. Plant Physiol. 121, 479-487 https://doi.org/10.1104/pp.121.2.479
  18. Tesniere, C., Torregrosa, L., Pradal, M., Souquet, J. M., Gilles, C., Santos, K. D., Chatelet, P. and Gunata, Z. (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondarymetabolites in grapevine leaves. J. Exp. Bot. 57, 91-99 https://doi.org/10.1093/jxb/erj007
  19. Jarillo, J. A., Leyva, A., Salonas, J. and Martinez-Zapater, J. M. (1993) Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol. 101, 833-837 https://doi.org/10.1104/pp.101.3.833
  20. Gonzalez-Guzman, M., Apostolova, N., Belles, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., Micol, J. L., Serrano, R. and Rodriquez, P. L. (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14, 1833-1846 https://doi.org/10.1105/tpc.002477
  21. Liu, Y., Pan, Q., Yang, H., Liu, Y. and Huang, W. (2008) Relationship between $H_2O_2$ and jasmonic acid in pea leaf wounding response. Russ. J. Plant Physiol. 55, 765-775 https://doi.org/10.1134/S1021443708060058
  22. Kim, Y. H., Yang, K. S., Kim, C. Y., Ryu, S. H., Song, W. K., Kwon, S. Y., Lee, H. S., Bang, J. W. and Kwak, S. S. (2008) Molecular cloning of peroxidase cDNAs from dehydration- treated fibrous roots of sweetpotato and their differential expression in response to stress. Biochem. Mol. Biol. Reports 41, 259-265
  23. Kim, Y. J., Shim, J. S., Krishna, P. R., Kim, S. Y., In, J. G., Kim, M. K. and Yang, D. C. (2008) Isolation and characterization of a glutaredoxin gene from Panax ginseng C. A. Meyer. Plant Mol. Biol. Rep. 26, 335-349 https://doi.org/10.1007/s11105-008-0053-4
  24. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132 https://doi.org/10.1016/0022-2836(82)90515-0

Cited by

  1. iTRAQ-based Protein Profiling and Fruit Quality Changes at Different Development Stages of Oriental Melon vol.17, pp.1, 2017, https://doi.org/10.1186/s12870-017-0977-7
  2. In silico gene expression analysis in Codonopsis lanceolata root vol.38, pp.5, 2011, https://doi.org/10.1007/s11033-010-0464-9
  3. Transcriptomics-based identification ofWRKYgenes and characterization of a salt and hormone-responsivePgWRKY1gene inPanax ginseng vol.48, pp.2, 2016, https://doi.org/10.1093/abbs/gmv122
  4. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots vol.77, pp.3, 2011, https://doi.org/10.1007/s11103-011-9812-y
  5. Molecular cloning and expression analysis of PDR1-like gene in ginseng subjected to salt and cold stresses or hormonal treatment vol.71, 2013, https://doi.org/10.1016/j.plaphy.2013.07.011
  6. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng vol.47, pp.4, 2015, https://doi.org/10.1093/abbs/gmv012
  7. Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection vol.3, pp.1, 2014, https://doi.org/10.1186/2193-1801-3-613
  8. The plant ADH gene family vol.66, pp.1, 2011, https://doi.org/10.1111/j.1365-313X.2010.04458.x
  9. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns vol.7, 2016, https://doi.org/10.3389/fpls.2016.00670
  10. Transcriptome profiling and insilico analysis of Gynostemma pentaphyllum using a next generation sequencer vol.30, pp.11, 2011, https://doi.org/10.1007/s00299-011-1114-y
  11. Two members of unassigned type of short-chain dehydrogenase/reductase superfamily (SDR) isolated from Persicaria minor show response towards ABA and drought stress vol.27, pp.3, 2018, https://doi.org/10.1007/s13562-017-0436-4