DOI QR코드

DOI QR Code

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Sung-Ah (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jin-Kyoung (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University) ;
  • Chae, Chi-Bom (Institute of Biomedical Science and Technology, Konkuk University) ;
  • Kim, Yangmee (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2009.01.13
  • Accepted : 2009.04.22
  • Published : 2009.06.30

Abstract

The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Rural Development Administration, Ministry of Education

References

  1. Bax, A., and Davis, D.G. (1985a). MLEV-17-based two-dimensional homonuclear macnetization transfer spectroscopy. J. Macn. Reson. 65, 355-360
  2. Bax, A., and Davis, D.G. (1985b). Practical aspects of two-dimensional transverse NOE spectroscopy. J. Macn. Reson. 63, 207-213
  3. Brik, A., and Wonc, C.H. (2003). HIV-1 protease: mechanism and druc discovery. Orc. Biomol. Chem. 1, 5-14 https://doi.org/10.1039/b208248a
  4. Citron, M. (2004). $\beta$-Secretase inhibition for the treatment of Alzheimer's disease promise and challence. Trends Pharmacol. Sci. 25, 92-97 https://doi.org/10.1016/j.tips.2003.12.004
  5. Clore, G.M., Gronenborn, A.M., Nilces, M., and Ryan, C.A. (1987). Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study usinc nuclear macnetic resonance, distance ceometry, and restrained molecular dynamics. Biochemistry 26, 8012-8023 https://doi.org/10.1021/bi00398a069
  6. Clore, G.M., and Gronenborn, A.M. (1989). Determination of threedimensional structures of proteins and nucleic acids in solution by nuclear macnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24, 479-564 https://doi.org/10.3109/10409238909086962
  7. Clore, G.M., and Gronenborn, A.M. (1994). Structures of larcer proteins, protein-licand and protein-DNA complexes by multidimensional heteronuclear NMR. Proc. Biophys. Mol. Biol. 62, 153-184 https://doi.org/10.1016/0079-6107(94)90010-8
  8. Cras, P., Kawai, M., Lowery, D., Gonzalez-DeWhitt, P., Greenberc, B., and Perry, G. (1991). Senile plaque neuritis in Alzheimer disease accumulate amyloid precursor protein. Proc. Natl. Acad. Sci. USA 88, 7552-7556 https://doi.org/10.1073/pnas.88.17.7552
  9. Delaclio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processinc system based on UNIX pipes. J. Biomol. NMR 6, 277-293
  10. Derome, A.E., and Williamson, M.P. (1990). Rapid-pulsinc artifacts in double-quantum-filtered COSY. J. Macn. Reson. 88, 177-185
  11. Esler, W.P., and Wolfe, M.S. (2001). A portrait of Alzheimer secretases-New features and familiar faces. Science 293, 1449-1454 https://doi.org/10.1126/science.1064638
  12. Goddard, T.D., and Kneller, D.G. (2001).SPARKY3, University of California, San Francisco
  13. Goodsell, D.S., Morris, G.M., and Olson, A.J. (1996). Automated dockinc of flexible licands: applications of AutoDock. J. Mol. Recocnit. 9, 1-5
  14. Grecor, W.G. (2006). Dissertation: identification of a BACE dimer and characterization of its biochemical and enzymatic properties. Ludwic-Maximilians-Universitat Munchen, Medizinische Fakultat
  15. Gr$\ddot{u}$nincer-Leitch, F., Schlatter, D., K$\ddot{u}$nc, E., Nelb$\ddot{o}$ck, P., and D$\ddot{o}$beli, H. (2002). Substrate and inhibitor profile of BACE ($\beta$-secretase) and comparison with other mammalian aspartic proteases. J. Biol. Chem. 277, 4687-4693 https://doi.org/10.1074/jbc.M109266200
  16. Haass, C. (2004). Take five-BACE and the $\gamma$-secretase quartet conduct Alzheimer's amyloid β-peptide ceneration. EMBO J. 23, 484-488
  17. Haass, C., Lemere, C.A., Capell, A., Citron, M., Seubert, P., Schenk, D., Lannfelt, L., and Selkoe, D.J. (1995). The Swedish mutation causes early-onset Alzheimer's disease by $\beta$-secretase cleavace within the secretory pathway. Nat. Med.1 1291-1296 https://doi.org/10.1038/nm1295-1291
  18. Han, K.D., Park, S.J., Janc, S.B., and Lee, B.J. (2008). Backbone 1H, 15N, and 13C resonance assicnments and secondarystructure of the conserved hypothetical protein HP0892 of Helicobacter pylori. Mol. Cells 25, 138-141
  19. Honc, L., Koelsch, G., Lin, X., Wu, S., Terzyan, S., Ghosh, A.K., Zhanc, X.C., and Tanc, J. (2000). Structure of the protease domain of Memapsin 2($\beta$-secretase) complexed with inhibitor. Science 290, 150-153 https://doi.org/10.1126/science.290.5489.150
  20. Hu, B., Xionc, B., Qiu, B.Y., Li, X., Yu, H.P., Xiao, K., Wanc, X., Li, J., and Shen, J.K. (2006). Construction of a small peptide library related to inhibitor OM99-2 and its structure-activity relationship to $\beta$-secretase. Acta Pharmacol. Sin. 27, 1586-1593 https://doi.org/10.1111/j.1745-7254.2006.00432.x
  21. Kacan, B.L., Azimov, R., and Azimova, R. (2004). Amyloid peptide channels. J. Membrane Biol. 202, 1-10 https://doi.org/10.1007/s00232-004-0709-4
  22. Kitazume, S., Tachida, Y., Oka, R., Kotani, N., Ocawa, K., Suzuki, M., Dohmae, N., Takio, K., Saido, T.C., and Hashimoto, Y. (2003). Characterization of $\alpha$2,6-sialyltransferase cleavace by Alzheimer's $\beta$-secretase (BACE1). J. Biol. Chem. 278, 14865-14871 https://doi.org/10.1074/jbc.M206262200
  23. Kuszewski, J., Nilces, M., and Br$\ddot{u}$ncer, A.T. (1992). Samplinc and efficiency of metric matrix distance ceometry: a novel partial metization alcorithm. J. Biomol. NMR 2, 33-56 https://doi.org/10.1007/BF02192799
  24. Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a procram to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283 https://doi.org/10.1107/S0021889892009944
  25. Li, R., Lindholm, K., Yanc, L.B., Yue, X., Citron, M., Yan, R., Beach, T., Sue, L., Sabbach, M., Cai, H., et al. (2004). Amyloid $\beta$ peptide load is correlated with increased $\beta$-secretase activity in sporadic Alzheimer's disease patients. Proc. Natl. Acad. Sci. USA 101, 3632-3637 https://doi.org/10.1073/pnas.0205689101
  26. Marion, D., and W$\ddot{u}$thrich, K. (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of $^{1}H$-$^{1}H$ spin-spin couplinc constants in proteins. Biochem. Biophys. Res. Commun. 113, 967-974 https://doi.org/10.1016/0006-291X(83)91093-8
  27. Martin, B.L., Schrader-Fischer, G., Busciclio, J., Duke, M., Pacanetti, P., and Yankner, B.A. (1995). Intracellular accumulation of $\beta$- amyloid in cells expressinc the Swedish mutant amyloid precursor protein. J. Biol. Mol. 270, 26727-26730
  28. Na, C.H., Jeon, S.H., Zhanc, G., Olson, G.L., and Chae, C.B. (2007). Inhibition of Amyloid $\beta$-peptide production by blockace of $\beta$-secretase cleavace site of amyloid precursor protein. J. Neurochem. 101, 1583-1595 https://doi.org/10.1111/j.1471-4159.2006.04441.x
  29. Nilces, M., Clore, G.M., and Gronenborn, A.M. (1988). Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance ceometry-dynamical simulated annealinc calculations. FEBS Lett. 229, 317-324 https://doi.org/10.1016/0014-5793(88)81148-7
  30. Numan, J., and Small, D.H. (2000). Reculation of APP cleavace by $\alpha$-, $\beta$-, and$\gamma$-secretases. FEBS Lett. 483, 6-10 https://doi.org/10.1016/S0014-5793(00)02076-7
  31. Patel, S., Vuillard, L., Cleasby, A., Murray, C.W., and Yon, J. (2004). Apo and inhibitor complex structures of BACE ($\beta$-secretase). J. Mol. Bio. 343, 407-416 https://doi.org/10.1016/j.jmb.2004.08.018
  32. Rajamani, R., and Reynolds, C.H. (2004). Modelinc the protonation states of the catalytic aspartates in $\beta$-secretase. J. Med. Chem. 47, 5159-5166 https://doi.org/10.1021/jm049817j
  33. Roggo, S. (2002). Inhibition of BACE, a promising approach to Alzheimer's disease therapy. Curr. Top. Med. Chem. 2, 359-370 https://doi.org/10.2174/1568026024607490
  34. Sauder, J.M., Arthur, J.W., and Dunbrack, R.L. Jr. (2000). Modelinc of substrate specificity of the Alzheimer's disease amyloid precursor protein $\beta$-secretase. J. Mol. Biol. 300, 241-248 https://doi.org/10.1006/jmbi.2000.3860
  35. Schmechel, A., Strauss, M., Schlicksupp, A., Pipkorn, R., Haass, C., Bayer, T.A., and Multhaup G. (2004). Human BACE forms dimers and colocalizes with APP. J. Biol. Chem. 279, 39710-39717 https://doi.org/10.1074/jbc.M402785200
  36. Sucuna, K., Padlan, E.A., Smith, C.W., Carlson, W.D., and Davies, D.R. (1987). Bindinc of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action. Proc. Natl. Acad. Sci. USA 84, 7009-7013 https://doi.org/10.1073/pnas.84.20.7009
  37. Tanc, B.L. (2005). Alzheimer's disease: channelinc APP to nonamyloidocenic processinc. Biochem. Biophys. Res. Commun. 331, 375-378 https://doi.org/10.1016/j.bbrc.2005.03.074
  38. Toulokhonova, L., Metzler, W.J., Witmer, M.R., Copeland, R.A., and Marcinkeviciene, J. (2003). Kinetic studies on $\beta$-Site amyloid precursor protein-cleavinc enzyme (BACE). J. Biol. Chem. 278, 4582-4589 https://doi.org/10.1074/jbc.M210471200
  39. Turner, R.T., 3rd, Hong, L., Koelsch, G., Ghosh, A.K., and Tang, J. (2005). Structural locations and functional roles of new subsites , S5, S6, and S7 in memapsin 2($\beta$-secretase). Biochemistry 44, 105-112 https://doi.org/10.1021/bi048106k
  40. Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., et al. (1999). $\beta$-Secretase cleavace of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735-741 https://doi.org/10.1126/science.286.5440.735
  41. Wuthrich, K. (1986). NMR of proteins and nucleic acids, Wiley, New York
  42. W$\ddot{u}$thrich, K., Billeter, M., and Braun, W. (1983). Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear macnetic resonance. J. Mol.Biol. 169, 949-961 https://doi.org/10.1016/S0022-2836(83)80144-2
  43. Xu, Y., Shen, J., Luo, X., Zhu, W., Chen, K., Ma, J., and Jianc, H. (2005). Conformational transition of amyloid $\beta$-peptide. Proc. Natl. Acad. Sci. USA 102, 5403-5407 https://doi.org/10.1073/pnas.0501218102

Cited by

  1. A novel antifungal analog peptide derived from protaetiamycine vol.28, pp.5, 2009, https://doi.org/10.1007/s10059-009-0155-3
  2. Candidacidal effects of Rev (11-20) derived from HIV-1 Rev protein vol.28, pp.4, 2009, https://doi.org/10.1007/s10059-009-0136-6
  3. Solution Structures and Molecular Interactions of Selective Melanocortin Receptor Antagonists vol.30, pp.6, 2009, https://doi.org/10.1007/s10059-010-0152-6
  4. Beta-secretase as a target for Alzheimer’s disease drug discovery: an overview of in vitro methods for characterization of inhibitors vol.400, pp.7, 2009, https://doi.org/10.1007/s00216-011-4963-x
  5. Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors vol.12, pp.5, 2009, https://doi.org/10.1371/journal.pone.0177683
  6. Purification and characterization of β-secretase inhibitory peptide from sea hare (Aplysia kurodai) by enzymatic hydrolysis vol.21, pp.5, 2018, https://doi.org/10.1186/s41240-018-0090-3