DOI QR코드

DOI QR Code

Efficient Derivation and Long Term Maintenance of Pluripotent Porcine Embryonic Stem-like Cells

  • Son, Hye-Young (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jung-Eun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang-Goo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Hye-Sun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Eugene (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Jin-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Ka, Hakhyun (Department of Biological Resources and Technology, and Institute of Biomaterials, Yonsei University) ;
  • Kim, Hyun-Jong (National Institute of Animal Science, RDA) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2008.06.18
  • Accepted : 2008.09.16
  • Published : 2009.01.01

Abstract

Porcine embryonic stem (ES) cells have a great potential as tools for transgenic animal production and studies of regulation of differentiation genes. Although several studies showed successful derivation of porcine ES-like cells, these cells were not maintained long-term in culture. Therefore, this study was conducted to establish porcine pluripotent ES-like cells using in vivo fertilized embryos and to maintain these cells in long term culture. Porcine ES-like cells from in vivo embryos obtained by immunosurgery or whole explant culture were successfully cultured for over 56 passages. Morphology of porcine ES-like cells was flat-shaped with a monolayer type colony. These cells stained for alkaline phosphatase throughout the culture. Furthermore, porcine ES-like cells reacted with antibodies against Oct-4, SSEA-1, SSEA-4, Tra-1-60, and Tra-1-81, which are typical markers of undifferentiated stem cells. To characterize the ability of porcine ES-like cells to differentiate into three germ layers, embryoid body formation was induced. After plating of these cells, porcine ES-like cells were spontaneously differentiated into various cell types of all three germ layers. In addition, porcine ES-like cells were successfully derived from IVF blastocysts in media containing human recombinant basic fibroblast growth factor.

Keywords

References

  1. Amit, M., M. K. Carpenter, M. S. Inokuma, C. P. Chiu, C. P. Harris, M. A. Waknitz, J. Itskovitz-Eldor and J. A. Thomson. 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227:271-278 https://doi.org/10.1006/dbio.2000.9912
  2. Brook, F. A. and R. L. Gardner. 1997. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA. 94:5709-5712 https://doi.org/10.1073/pnas.94.11.5709
  3. Chen, L. R., Y. L. Shiue, L. Bertolini, J. F. Medrano, R. H. Bondurant and G. B. Anderson. 1999. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenol. 52:195-212 https://doi.org/10.1016/S0093-691X(99)00122-3
  4. Dvorak, P., D. Dvorakova and A. Hampl. 2006. Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett. 580:2869-2874 https://doi.org/10.1016/j.febslet.2006.01.095
  5. Dyce, P. W., H. Zhu, J. Craig and J. Li. 2004. Stem cells with multilineage potential derived from porcine skin. Biochem. Biophys. Res. Commun. 316:651-658 https://doi.org/10.1016/j.bbrc.2004.02.093
  6. Evans, M. J. and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156 https://doi.org/10.1038/292154a0
  7. Han, Y. M., L. R. Abeydeera, J. H. Kim, H. B. Moon, R. A. Cabot, B. N. Day and R. S. Prather. 1999. Growth retardation of inner cell mass cells in polyspermic porcine embryos produced in vitro. Biol. Reprod. 60:1110-1113 https://doi.org/10.1095/biolreprod60.5.1110
  8. Kim, H. S., H. Y. Son, S. Kim, G. S. Lee, C. H. Park, S. K. Kang, B. C. Lee, W. S. Hwang and C. K. Lee. 2007. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote 15:55-63 https://doi.org/10.1017/S0967199406003972
  9. Kokron, C. M., F. A. Bonilla, H. C. Oettgen, N. Ramesh, R. S. Geha and F. Pandolfi. 1997. Searching for genes involved in the pathogenesis of primary immunodeficiency diseases: Lessons from mouse knockouts. J. Clin. Immunol. 17:109-126 https://doi.org/10.1023/A:1027322314256
  10. Kondoh, G., Y. Yamamoto, K. Yoshida, Y. Suzuki, S. Osuka, Y. Nakano, T. Morita and J. Takeda. 1999. Easy assessment of es cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J. Biochem. Biophys. Methods 39:137-142 https://doi.org/10.1016/S0165-022X(99)00008-1
  11. Kues, W. A., B. Petersen, W. Mysegades, J. W. Carnwath and H. Niemann. 2005. Isolation of murine and porcine fetal stem cells from somatic tissue. Biol. Reprod. 72:1020-1028 https://doi.org/10.1095/biolreprod.104.031229
  12. Lee, S. G., C. H. Park, D. H. Choi, H. S. Kim, H. H. Ka and C. K. Lee. 2007. In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Mol. Reprod. Dev. 74:1436-1445 https://doi.org/10.1002/mrd.20728
  13. Levenstein, M. E., T. E. Ludwig, R. H. Xu, R. A. Llanas, K. Vandenheuvel-Kramer, D. Manning and J. A. Thomson. 2006. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568-574 https://doi.org/10.1634/stemcells.2005-0247
  14. Li, M., Y. H. Li, Y. Hou, X. F. Sun, Q. Sun and W. H. Wang. 2004a. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12:43-48 https://doi.org/10.1017/S0967199404002679
  15. Li, M., W. Ma, Y. Hou, X. F. Sun, Q. Y. Sun and W. H. Wang. 2004b. Improved isolation and culture of embryonic stem cells from chinese miniature pig. J. Reprod. Dev. 50:237-244 https://doi.org/10.1262/jrd.50.237
  16. Li, M., D. Zhang, Y. Hou, L. Jiao, X. Zheng and W. H. Wang. 2003. Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65:429-434 https://doi.org/10.1002/mrd.10301
  17. Machaty, Z., B. N. Day and R. S. Prather. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59:451-455 https://doi.org/10.1095/biolreprod59.2.451
  18. Martin, G. R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 78:7634-7638 https://doi.org/10.1073/pnas.78.12.7634
  19. Mueller, S., K. Prelle, N. Rieger, H. Petznek, C. Lassnig, U. Luksch, B. Aigner, M. Baetscher, E. Wolf, M. Mueller and G. Brem. 1999. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells. Mol. Reprod. Dev. 54:244-254 https://doi.org/10.1002/(SICI)1098-2795(199911)54:3<244::AID-MRD5>3.0.CO;2-5
  20. Piedrahita, J. A., K. Moore, B. Oetama, C. K. Lee, N. Scales, J. Ramsoondar, F. W. Bazer and T. Ott. 1998. Generation of transgenic porcine chimeras using primordial germ cellderived colonies. Biol. Reprod. 58:1321-1329 https://doi.org/10.1095/biolreprod58.5.1321
  21. Reubinoff, B. E., M. F. Pera, C. Y. Fong, A. Trounson and A. Bongso. 2000. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnol. 18:399-404 https://doi.org/10.1038/74447
  22. Rose-John, S. 2002. Gp130 stimulation and the maintenance of stem cells. Trends in biotechnology 20:417-419 https://doi.org/10.1016/S0167-7799(02)02056-5
  23. Saito, S., K. Sawai, H. Ugai, S. Moriyasu, A. Minamihashi, Y. Yamamoto, H. Hirayama, S. Kageyama, J. Pan, T. Murata, Y. Kobayashi, Y. Obata and K. K. Yokoyama. 2003. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem. Biophys. Res. Commun. 309:104-113 https://doi.org/10.1016/S0006-291X(03)01536-5
  24. Shastry, B. S. 1998. Gene disruption in mice: Models of development and disease. Mol. Cell. Biochem. 181:163-179 https://doi.org/10.1023/A:1006865210012
  25. Shigetoyo Amano, A. H. 1976. In vivo study on the process of solid tumor formation from embryoid bodies of mouse teratocarcinoma development. Growth and Differentiation 8:95-104
  26. Shim, H., A. Gutierrez-Adan, L. R. Chen, R. H. Bondurant, E. Behboodi and G. B. Anderson. 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol. Reprod. 57:1089-1095 https://doi.org/10.1095/biolreprod57.5.1089
  27. Smith, A. G., J. K. Heath, D. D. Donaldson, G. G. Wong, J. Moreau, M. Stahl and D. Rogers. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688-690 https://doi.org/10.1038/336688a0
  28. Talbot, N. C. and W. M. Garrett. 2001. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: Development of junctional apparatus and the lethal effects of pbs mediated cell-cell dissociation. Anat. Rec. 264:101-113 https://doi.org/10.1002/ar.1141
  29. Talbot, N. C., A. M. Powell and W. M. Garrett. 2002. Spontaneous differentiation of porcine and bovine embryonic stem cells (epiblast) into astrocytes or neurons. In vitro Cell. Dev. Biol. Anim. 38:191-197 https://doi.org/10.1290/1071-2690(2002)038<0191:SDOPAB>2.0.CO;2
  30. Talbot, N. C., C. E. Rexroad, Jr., V. G. Pursel and A. M. Powell. 1993a. Alkaline phosphatase staining of pig and sheep epiblast cells in culture. Mol. Reprod. Dev. 36:139-147 https://doi.org/10.1002/mrd.1080360204
  31. Talbot, N. C., C. E. Rexroad, Jr., V. G. Pursel, A. M. Powell and N. D. Nel. 1993b. Culturing the epiblast cells of the pig blastocyst. In vitro Cell Dev. Biol. Anim. 29A:543-554
  32. Talbot, N. C., M. Worku, M. J. Paape, P. Grier, C. E. Rexroad, Jr. and V. G. Pursel. 1996. Continuous cultures of macrophages derived from the 8-day epiblast of the pig. In vitro Cell Dev. Biol. Anim. 32:541-549 https://doi.org/10.1007/BF02722981
  33. Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall and J. M. Jones. 1998. Embryonic stem cell lines derived from human blastocysts. Sci. 282:1145-1147 https://doi.org/10.1126/science.282.5391.1145
  34. Tsung, H. C., Z. W. Du, R. Rui, X. L. Li, L. P. Bao, J. Wu, S. M. Bao and Z. Yao. 2003. The culture and establishment of embryonic germ (eg) cell lines from chinese mini swine. Cell Res. 13:195-202 https://doi.org/10.1038/sj.cr.7290164
  35. Wianny, F., C. Perreau and M. T. Hochereau De Reviers. 1997. Proliferation and differentiation of porcine inner cell mass and epiblast in vitro. Biol. Reprod. 57:756-764 https://doi.org/10.1095/biolreprod57.4.756
  36. Xu, R. H., R. M. Peck, D. S. Li, X. Feng, T. Ludwig and J. A. Thomson. 2005. Basic fgf and suppression of bmp signaling sustain undifferentiated proliferation of human es cells. Nat. Methods 2:185-190 https://doi.org/10.1038/nmeth744
  37. Xu, X. M., J. L. Hua, W. W. Jia, W. Huang, C. R. Yang and Z. Y. Dou. 2007. Parthenogenetic activation of porcine oocytes and isolation of embryonic stem cells-like derived from parthenogenetic blastocysts. Asian-Aust. J. Anim. Sci 20:1510-1518

Cited by

  1. Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro vol.37, pp.4, 2013, https://doi.org/10.1007/s11259-013-9574-x
  2. Primed Pluripotent Cell Lines Derived from Various Embryonic Origins and Somatic Cells in Pig vol.8, pp.1, 2013, https://doi.org/10.1371/journal.pone.0052481
  3. Epigenetic Changes of Lentiviral Transgenes in Porcine Stem Cells Derived from Embryonic Origin vol.8, pp.8, 2013, https://doi.org/10.1371/journal.pone.0072184
  4. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0151737
  5. Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal vol.40, pp.2, 2017, https://doi.org/10.14348/molcells.2017.2223
  6. Attempting to Convert Primed Porcine Embryonic Stem Cells into a Naive State Through the Overexpression of Reprogramming Factors vol.20, pp.5, 2018, https://doi.org/10.1089/cell.2017.0071
  7. Establishment of In-Vitro Culture System for Enhancing Production of Somatic Cell Nuclear Transfer (SCNT) Blastocysts with High Performance in the Colony Formation and Formation of Colonies Derived fr vol.34, pp.2, 2009, https://doi.org/10.12750/jarb.34.2.130
  8. Effects of in vitro Culture Period of Reconstructed Embryos and Genetic Background of Feeder Cells on Establishment of Embryonic Stem Cells Derived from Somatic Cell Nuclear Transfer Blastocysts in Pi vol.35, pp.1, 2020, https://doi.org/10.12750/jarb.35.1.86