Effect of Implant Length on the Immediate Loading at the Anterior Maxilla

즉시하중시 상악 전치부에 식립된 임플란트 길이 변화에 따른 응력 분포의 삼차원 유한요소 연구

  • Lee, Joon-Seok (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Joo (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • 이준석 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 김명주 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 권호범 (서울대학교 치의학대학원 치과보철학 교실) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학 교실)
  • Received : 2009.07.25
  • Accepted : 2009.09.25
  • Published : 2009.09.30

Abstract

Recently many studies have been published on application of immediate loaded implants. However, the immediate loading protocol has not been well documented. The purpose of the present study was to evaluate the stress distribution between bone-implant interfaces and the effect of implant length in the anterior maxilla using 3 dimensional finite element analyses. The diameter 4.0 mm threaded type implants with different length(8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) were used in this study. The bone quality of anterior maxillary bone block was assumed to D3 bone. Bone-implant interfaces of immediately loaded implant were constructed using a contact element for simulating the non osseointegration status. For simplification of all the processing procedures, all of the material assumed to be homogenous, isotropic, and linearly elastic. The 178 N of static force was applied on the middle of the palatoincisal line angle of the abutment with $120^{\circ}$ angle to the long axis of abutment. Maximum von Mises stress were concentrated on the labial cortical bone of the implant neck area, especially at the cortical-cancellous bone interfaces. Compared the different length, highest peak stress value was observed at the 8.5 mm implants and the results indicated a tendency towards favorable stress distribution on the bone, when the length was increased. Presence of cortical bone was very important to immediate loading, and it appears that implants of a length more than 13 mm are preferable for immediate loading at the anterior maxilla.

즉시 하중에 대한 관심과 시도가 증가되고 있지만, 명확한 술식이 정립되어 있지는 않다. 본 연구에서는 상악 전치부 임플란트에서 즉시 하중시에 골과 임플란트에 나타나는 응력분포 양상을 3차원 유한요소법을 이용하여 알아보고자 하였다. 골질이 D3인 상악 전치부의 골모형을 구성하고, 서로 다른 길이(8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm)의 직경 4.0 mm 나사형 임플란트를 식립한 모형을 제작하였다. 해석 절차의 간소화를 위하여 모든 물성은 등방성, 선형탄성, 균질성으로 가정하였다. 골-임플란트 계면은 접촉 요소법으로 처리하여 골유착이 일어나기 전 상태로 구성하였다. 지대주 장축에 120도의 각도로 지대주의 구개 절단각 중앙부에 176 N의 정하중을 가하고 응력분포를 관찰하였다. von Mises stress를 이용하여 응력을 분석한 결과 모든 모형에서 순측 피질골에 응력이 집중되었으며 피질골과 망상골의 경계부에서 최대 응력값을 나타내었다. 길이에 따른 비교시 8.5 mm 모형에서 가장 큰 최대 응력값을 나타냈으며, 임플란트 길이가 증가될수록 좀 더 양호한 응력 분포를 나타내었다. 상악 전치부 즉시 하중시에 피질골의 존재 유무는 매우 중요하며, 길이가 긴 임플란트를 식립하는 것이 유리하며, 가능하면 13.0 mm 이상의 임플란트를 식립하는 것이 즉시하중을 시행할 때 응력 분산에 유리한 것으로 판단된다.

Keywords

References

  1. Branemark P-I, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg, 1977;16:1–132
  2. Adell R, Lekholm U, Rockler B, Branemark P-I. A 15-year study of ossseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg, 1981;10:387–416 https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Nkenke E, Fenner M. Indications for immediate loading of implants and implant success. Clin Oral Implants Res, 2006;17(Suppl 2):19–34 https://doi.org/10.1111/j.1600-0501.2006.01348.x
  4. Cochran DL, Morton D, Weber HP. Consensus statements and recommended clinical procedures regarding loading protocols for endosseous dental implants. Int J Oral Maxillofac Implants, 2004;19(Suppl 1):109–113
  5. Aparicio C, Rangert B, Sennerby L. Immediate/early loading of dental implants: a report from the Sociedad Espanola de Implantes World Congress consensus meeting in Barcelona, Spain. Clin Implant Dent Related Res, 2003;5:57–60
  6. Glauser R, Zembic A, Hammerle CH. A systematic review of marginal soft tissue at implants subjected to immediate loading or immediate restoration. Clin Oral Implants Res, 2006;17Suppl2:82–92 https://doi.org/10.1111/j.1600-0501.2006.01355.x
  7. Cooper LF, De Kok IJ, Rojas-Vizcaya F, Pungpapong P, Chang SH. The immediate loading of dental implants. Compend Contin Educ Dent, 2007;28:216–225
  8. Ibanez, JC, Jalbout ZN. Immediate loading of Osseotite implants: two-year results. Implant Dentistry, 2002;11:128–136 https://doi.org/10.1097/00008505-200204000-00013
  9. Rocci A, Martignoni M, Gottlow J. Immediate loading in the maxilla using flapless surgery, implants placed in predetermined positions, and prefabricated provisional restorations: a retrospective 3-year clinical study. Clin Implant Dent Related Res, 2003;5 (Suppl 1):29-36
  10. Cannizzaro G, Leone M. Restoration of partially edentulous patients using dental implants with a microtextured surface: a prospective comparison of delayed and immediate full occlusal loading. Int J Oral Maxillofac Implants, 2003;18:512–22
  11. Ericsson I, Nilson H, Lindh T, Nilner K, Randow K. Immediate functional loading of Br${\aa}$nemark single tooth implants. An 18 months' clinical pilot follow-up study. Clin Oral Implants Res, 2000;11:26–33 https://doi.org/10.1034/j.1600-0501.2000.011001026.x
  12. Geng JP, Tan KPC, Liu GR. Application of finite element analysis in implant dentistry: A review of the literature. J Prosthet Dent, 2001;85:585-98 https://doi.org/10.1067/mpr.2001.115251
  13. Sevimay M, Turhan F, Kilicxarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent, 2005;93:227-34 https://doi.org/10.1016/j.prosdent.2004.12.019
  14. Helkimo E, Carlsson GE, Helkimo M. Bite force and state of dentition. Acta Odont Scand, 1976;35:297-303 https://doi.org/10.3109/00016357709064128
  15. Kao HC, Gung YW, Chung TF, Hsu ML. The influence of abutment Angulation on Micromotion level for immediately loaded dental implants: A 3-D finite element analysis. Int J Oral Maxillofac Implants, 2008;23:623-630
  16. Saab XE, Griggs JA, Powers JM, Engelmeier RL. Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: A finite element study. J Prosthet Dent, 2007;97:85-92 https://doi.org/10.1016/j.prosdent.2006.12.002
  17. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2003;18:357-368
  18. Himmlova L, Dost$\acute{a}$lov$\acute{a}$ T, Kacovsky A, Konvickova S. Influence of implant length and diameter on stress distribution: A finite element analysis. J Prosthet Dent, 2004;91:20-5 https://doi.org/10.1016/j.prosdent.2003.08.008
  19. Georgiopoulos B, Kalioras K, Provatidis C, Manda M, Koidis P. The effects of implant length and diameter prior to and after osseointegration: A 2-D finite element analysis. J Oral Implantol, 2007;33:243-56 https://doi.org/10.1563/1548-1336(2007)33[243:TEOILA]2.0.CO;2
  20. Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-lenear finite element study. J Dent, 2008;36:409-417 https://doi.org/10.1016/j.jdent.2008.02.015