DOI QR코드

DOI QR Code

Investigation of the optimum condition for the quantitative analysis of Cu sample by Laser induced breakdown spectroscopy

구리 시료의 정량분석을 위한 LIBS의 최적조건 연구

  • 김승현 (한국원자력연구원, 핵주기개발전략연구부) ;
  • 신희성 (한국원자력연구원, 핵주기개발전략연구부) ;
  • 주준식 (한국원자력연구원, 핵주기개발전략연구부) ;
  • 김호동 (한국원자력연구원, 핵주기개발전략연구부)
  • Received : 2009.01.22
  • Accepted : 2009.02.24
  • Published : 2009.04.25

Abstract

A laser induced breakdown spectroscopy (LIBS) measurement was carried out to derive an optimized measurement condition with a high reproducibility and to grow a plasma sphere to 20 mm high under a 600 mtorr vacuum in order to improve an accuracy of measurement. The measurement of the plasma was taken at a 6.0 mm distance, in the direction of a plasma sphere, from a sample. This location belongs to the outer sphere region in the plasma. The calibration curve of 'Ni' and 'Cu' was acquired by the signal intensity ratio and the atomic ratio for the samples, and linear regression of 'Cu' was $R^2$=0.9886, and the linear regression of 'Ni' was $R^2$=0.9988. The accuracy of LIBS was improved pre-existence as the measurement error of 'Ni' was 0.78%.

Laser induced breakdown spectroscopy (LIBS)의 정량분석에 대한 측정의 정확도를 향상시키고자, 플라즈마의 특성을 분석하여, 상대적으로 안정적인 Outer sphere에 해당하는 영역을 측정하는 방법으로 Cu alloy sample을 측정하여 분석하였다. 신호의 높은 재현성을 고려한 측정 조건에서 측정이 수행되었으며, 600 mtorr 진공상태에서 20 mm정도의 크기로 플라즈마를 성장시켜, Outer sphere 영역인 플라즈마 성장방향으로 6.0 mm 지점을 측정하였다. 그 결과 Cu의 선형 분석 $R^2$ 값은 0.9886로, Ni의 $R^2$ 값은 0.9988로 획득하였으며, 측정오차는 Ni의 경우 기존보다는 향상된 0.78%의 측정오차를 획득하였다.

Keywords

References

  1. H. K. Cha, K. S. Song, D. H. Kim, K. H. Yang, E. C. Jung, D. Y. Jeong, Y. J. Yi, S. M. Lee, K. H. Hong, J. M. Han, B. D. Yoo, S. P. Rho, J. H. Yi, H. M. Park, B. H. Cha, S. M. Nam and J. M. Lee, 'Development of Atomic Spectroscopy Technology: Development of Ultrasensitive Spectroscopic Analysis Technology', 69-89, KAERI, Korea (1997)
  2. H. K. Cha, K. S. Song, Y. J. Rhee, D. H. Baik, J. S. Shin, D. H. Kim, K. H. Yang and J. H. Yi, 'Development of Atomic Spectroscopy Technology: Development of Ultrasensitive Spectroscopic Analysis Technology', 97-131, KAERI, Korea (1994)
  3. T. K. Li, S. Y. Lee, M. C. Miller, M. T. Swinhoe, J. B. Marlow and H. O. Menlove, 'Safeguardability of Advanced Spent Fuel Conditioning Process', 40-49 (2006)
  4. Y. I. Lee, K. S. Song and J. Sneddon, 'Laser-Induced Breakdown Spectrometry', Susan Boriotti, Nova, U.S.A (2000)
  5. S.-H. Kim, 'Accuracy improvement of LIBS for plasma sphere control', CNU, Korea (2008)
  6. J. Sneddon, Y.-I. Lee and K. S. Song, Advances in atomic spectroscopy, 7, 287-360(2002)
  7. Y.-I. Lee, 'Development of Optical-fiber Laser-induced Breakdown Spectroscopy for Real-Time Elemental Analysis', 43, KAERI, Korea (1999)
  8. G. Galbacs, I. B. Gornushkin, B. W. Smith and J. D. Winefordner, Spectrochimica Acta Part B, 56, 1159-1173(2001) https://doi.org/10.1016/S0584-8547(01)00205-1
  9. R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. J. L. van der Steen and M. Angelone, Appl. Phys. B, 65, 101-107(1997) https://doi.org/10.1007/s003400050256
  10. N. Glumac and G. Elliott, Optics and Laser in Engineering, 45, 27-35(2007) https://doi.org/10.1016/j.optlaseng.2006.04.002
  11. J. Sneddon, T. L. Thiem and Y.-I. Lee, 'Lasers in analytical atomic spectroscopy' (1997)
  12. D. Body and B. L. Chadwick, Spectrochimica Acta Part B, 56, 725-736(2001) https://doi.org/10.1016/S0584-8547(01)00186-0
  13. R. Kransniker, V. Bulatov and I. Schechter, Spectrochimica Acta Part B, 56, 609-618(2001) https://doi.org/10.1016/S0584-8547(01)00194-X
  14. J. O. Caceres, J. Tornero Lopez, H. H. Telle and A. Gonzalez Urena, Spectrochimica Acta Part B, 56, 831-838(2001) https://doi.org/10.1016/S0584-8547(01)00173-2
  15. I. Bassiotis, A. Diamantopoulou, A. Giannoudako, F. Roubani-Kalantzopoulou and M. Kompitsas, Spectrochimica Acta Part B, 56, 671-683(2001) https://doi.org/10.1016/S0584-8547(01)00225-7