References
- Adams, G.R., and Haddad, F. (1996). The relationships among IGF-I, DNA content, and protein accumulation during skeletal muscle hypertrophy. J. Appl. Physiol. 81, 2509-2516 https://doi.org/10.1152/jappl.1996.81.6.2509
- Butler, A.A., Yakar, S., Gewolb, I.H., Karas, M., Okubo, Y., and LeRoith, D. (1998). Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp. Biochem. Physiol. B Mol. Biol. 121, 19-26 https://doi.org/10.1016/S0305-0491(98)10106-2
- Carlson, C.J., Fan, Z., Gordon, S.E., and Booth, F.W. (2001). Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. J. Appl. Physiol. 91, 2079-2087 https://doi.org/10.1152/jappl.2001.91.5.2079
- Chen, Y., Zajac, J.D., and MacLean, H.E. (2005). Androgen regulation of satellite cell function. J. Endocrinol. 186, 21-31 https://doi.org/10.1677/joe.1.05976
- Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., and Klocker, H. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54, 5474-5478
- Fanzani, A., Colombo, F., Giuliani, R., Preti, A., and Marchesini, S. (2006). Insulin-like growth factor 1 signaling regulates cytosolic sialidase Neu2 expression during myoblast differentiation and hypertrophy. FEBS J. 273, 3709-3721 https://doi.org/10.1111/j.1742-4658.2006.05380.x
- Haddad, F., and Adams, G.R. (2004). Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. J. Appl. Physiol. 96, 203-210 https://doi.org/10.1152/japplphysiol.00856.2003
- Keren, A., Tamir, Y., and Bengal, E. (2006). The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol. Cell. Endocrinol. 252, 224-230 https://doi.org/10.1016/j.mce.2006.03.017
- Kim, H.J., and Lee, W.J. (2009). Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol. Cells 28, 189-194 https://doi.org/10.1007/s10059-009-0118-8
- Lee, D.K. (2002). Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 294, 408-413 https://doi.org/10.1016/S0006-291X(02)00504-1
- Lee, W.J., McClung, J., Hand, G.A., and Carson, J.A. (2003a). Overload-induced androgen receptor expression in the aged hindlimb receiving nandrolone decanoate. J. Appl. Physiol. 94, 1153-1161 https://doi.org/10.1152/japplphysiol.00822.2002
- Lee, W.J., Thompson, R.W., McClung, J.M., and Carson, J.A. (2003b). Regulation of androgen receptor expression at the onset of functional overload in rat plantaris muscle. Am. J. Physiol. 285, R1076-R1085
- Lin, H.K., Yeh, S., Kang, H.Y., and Chang, C. (2001). Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA 98, 7200-7205 https://doi.org/10.1073/pnas.121173298
- Lin, H.K., Wang, L., Hu, Y.C., Altuwaijri, S., and Chang, C. (2002). Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 21, 4037-4048 https://doi.org/10.1093/emboj/cdf406
- Lu, S., Liu, M., Epner, D.E., Tsai, S.Y., and Tsai, M.J. (1999). Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol. Endocrinol. 13, 376-384 https://doi.org/10.1210/me.13.3.376
- McLellan, A.S., Kealey, T., and Langlands, K. (2006). An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells. Am. J. Physiol. 291, C300-C307 https://doi.org/10.1152/ajpcell.00345.2005
- Meng, D., Shi, X., Jiang, B.H., and Fang, J. (2007). Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic. Biol. Med. 42, 1651-1660 https://doi.org/10.1016/j.freeradbiomed.2007.01.037
- Mora, G.R., and Mahesh, V.B. (1999). Autoregulation of androgen receptor at the translational level: testosterone induces accumulation of androgen receptor mRNA in the rat ventral prostate polyribosomes. Steroids 64, 587-591 https://doi.org/10.1016/S0039-128X(99)00037-9
- Roy, A.K., Tyagi, R.K., Song, C.S., Lavrovsky, Y., Ahn, S.C., Oh, T.S., and Chatterjee, B. (2001). Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann. NY Acad. Sci. 949, 44-57 https://doi.org/10.1111/j.1749-6632.2001.tb04001.x
- Taneja, S.S., Ha, S., Swenson, N.K., Huang, H.Y., Lee, P., Melamed, J., Shapiro, E., Garabedian, M.J., and Logan, S.K. (2005). Cellspecific regulation of androgen receptor phosphorylation in vivo. J. Biol. Chem. 280, 40916-40924 https://doi.org/10.1074/jbc.M508442200
- Tyagi, R.K., Lavrovsky, Y., Ahn, S.C., Song, S.C., Chatterjee, B., and Roy, A.K. (2000). Dynamics of intercellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol. 14, 1162-1174 https://doi.org/10.1210/me.14.8.1162
- Ueda, T., Mawji, N.R., Bruchovsky, N., and Sadar, M.D. (2002). Ligand-independent activation of the androgen receptor by interleukin- 6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J. Biol. Chem. 227, 38087-38094
- Wannenes, F., Caprio, M., Gatta, L., Fabbri, A., Bonini, S., and Moretti, C. (2008). Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol. Cell. Endocrinol. 292, 11-19 https://doi.org/10.1016/j.mce.2008.05.018
- Wen, Y., Hu, M.C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D.H., and Hung, M.C. (2000). HER-2/neu promotes androgenindependent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 60, 6841-6845
- Wu, J.D., Haugk, K., Woodke, L., Nelson, P., Coleman, I., and Plymate, S.R. (2006). Interaction of IGF-signaling and the androgen receptor in prostate cancer progression. J. Cell. Biochem. 99, 392-401 https://doi.org/10.1002/jcb.20929
- Xu, L., Glass, C.K., and Rosenfeld, M.G. (1999). Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9, 140-147 https://doi.org/10.1016/S0959-437X(99)80021-5
Cited by
- The changing therapeutic landscape of castration-resistant prostate cancer vol.8, pp.10, 2009, https://doi.org/10.1038/nrclinonc.2011.117
- Glucocorticoid receptor enhances involucrin expression of keratinocyte in a ligand-independent manner vol.390, pp.1, 2009, https://doi.org/10.1007/s11010-014-1985-7
- AR Signaling and the PI3K Pathway in Prostate Cancer vol.9, pp.4, 2017, https://doi.org/10.3390/cancers9040034
- Expression profiling of lncRNAs and mRNAs reveals regulation of muscle growth in the Pacific abalone, Haliotis discus hannai vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-35202-z
- Effect of Three Different Maximal Concentric Velocity Squat Protocols on MAPK Phosphorylation and Endocrine Responses vol.33, pp.6, 2009, https://doi.org/10.1519/jsc.0000000000002411
- Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications vol.20, pp.16, 2009, https://doi.org/10.3390/ijms20163881
- MAPK, androgen, and glucocorticoid receptor phosphorylation following high-frequency resistance exercise non-functional overreaching vol.119, pp.10, 2019, https://doi.org/10.1007/s00421-019-04200-y
- The Effects of Androgens on T Cells: Clues to Female Predominance in Autoimmune Liver Diseases? vol.11, pp.None, 2009, https://doi.org/10.3389/fimmu.2020.01567
- Anabolic-Androgenic Steroid Use in Sports, Health, and Society vol.53, pp.8, 2021, https://doi.org/10.1249/mss.0000000000002670
- Androgen receptor regulates the proliferation of myoblasts under appropriate or excessive stretch through IGF-1 receptor mediated p38 and ERK1/2 pathways vol.18, pp.1, 2009, https://doi.org/10.1186/s12986-021-00610-y