환경인자를 이용한 직경 및 수고생장 모형 추정

Estimation of Diameter and Height Growth Equations Using Environmental Variables

  • Lee, Sang-Hyun (Department Forest Resources, Chonbuk National Univertsity)
  • 투고 : 2009.05.04
  • 심사 : 2009.05.13
  • 발행 : 2009.06.30

초록

본 연구는 전통적인 empirical 생장모델에 환경 인자를 독립변수로 사용하여 이를 환경 인자에 대한 생장 모델의 변화를 분석하여 정도가 높은 생장 모형 구축 가능성 여부를 판단하였다. 이를 위하여 기본적으로 추정된 편백의 수고 및 직경 생장모델에 각 지역의 환경 인자인 평균 기온, 평균 강수량, 고도, 토양의 유기질 함유량을 독립 변수로 추가 하였다. 수고 생장 모델은 Gompertz 다형방정식에 점근 변수인 ${\alpha}$에 온도 고도 인자의 2독립 변수로 도입하여 모델의 정도를 향상 시킬 수 있었다. 직경 생장 모델 또한 Gompertz 다형방정식에 연평균 강수량과 해발고를 도입한 모델이 정도가 높은 것으로 나타났다. 환경 인자를 도입하기 전과 후의 모델의 정도 향상을 비교 했을 때 아주 뚜렷하게 모델의 향상은 나타나지 않았으나 일정 비율의 정도를 향상 시킬 수 있었다. 이는 생장 모델을 구축하기 위한 데이터 조사의 어려움 및 투자할 수 있는 예산을 감안하여 모델의 정도를 향상시키기 위하여 비교적 쉽게 구할 수 있는 환경 인자들의 이용 가능성이 많은 것으로 판단된다.

This study purposed to judge potential possibility of building highly precise empirical model using environmental variables. Environmental variables such as altitude, mean annual rainfall, mean annual temperature and organic matter ratio of soil were added to height and diameter model for Chamaecyparis obtusa, and examined accuracy and residuals of prediction model. Improvement in precision was found for the Gompertz polymorphic height model by including mean temperature and altitude as independent variables, while the Gompertz diameter model with annual rainfall and altitude was showed improvement of precision and accuracy. Comparing the improvement of precision between the model before adding environmental variables and the model after adding them, an improvement or some ratio was obtained though it is not obvious. Therefore, there is enough proof that adding environmental variables, which can be easily acquired relatively when considering the difficulties of measurement and budget, into the model as independent variables would improve the accuracy and precision of growth models.

키워드

과제정보

연구 과제 주관 기관 : 전북대학교

참고문헌

  1. 우종춘, 안종만, 윤화영, 이동섭, 이상현, 이영진, 이우균, 임영준. 2007. 산림경영학. 향문사. 서울. pp. 331
  2. Belli, K.L. and Nautiyal, J.C. 1989. Production functions: a useful tool for forest management. Forest Ecology and Management 29: 267-275 https://doi.org/10.1016/0378-1127(89)90098-4
  3. Bossel, H. 1991. Modelling forest dynamics: Moving from description to explanation. Forest Ecology and Management 42: 129-142 https://doi.org/10.1016/0378-1127(91)90069-8
  4. Goulding, C.J. 1979. Validation of growth models for Pinus radiata in New Zealand. New Zealand Journal of Forestry 24(1): 108-124
  5. Landsberg, J.J. 1986. Physiological ecology of forest production. Academic press. London. pp. 165
  6. Lee, S.H. and Kim, H. 2005. Localizing growth model of Chamaecyparis obtusa stands using dummy variables in a single equation. Journal of Korean. Forest Society 94(2): 121-126
  7. Liu Xu. 1990. Growth and yield of Douglad fir plantations in the Central North Island of New Zealand. Ph.D Thesis. School of Forestry, University of Canterbury, New Zealand. pp. 244
  8. Pienaar, L.V. and Turnbull, K.J. 1973. The Chapman-Richards generalization of von Bertalanffy's model for basal area growth and yield in even-aged stands. Forest Science 19: 2-22
  9. Schumacher, F.X. 1939. A new growth curve and its application to timber-yield studies. Journal of Forestry 37: 819-820
  10. Vanclay J.K. 1994. Modelling forest growth and yield: application to mixed tropical forests. CAB International Wallingford, UK. pp. 312
  11. Whyte, A.G.D. and Woollons, R.C. 1990. Modelling stand growth of radiata pine thinned to varying densities. Canadian Journal of Forest Research 20: 1069-1076 https://doi.org/10.1139/x90-142
  12. Woollons, R.C., Whyte, A.G.D. and Liu, Xu. 1990. The Hossfeld function: and alternative model for depiction stand growth and yield. Journal of Japan Association Forest Statisticians 15: 25-35