DOI QR코드

DOI QR Code

Proteomic analysis of human serum from patients with temporal lobe epilepsy

측두엽 간질환자의 혈청에서 프로테오믹스기법을 활용한 질병관련 단백질 동정

  • Lee, Chang Woo (Department of Pediatrics, Wonkwang University College of Medicine) ;
  • Yu, Seung Taek (Department of Pediatrics, Wonkwang University College of Medicine) ;
  • Choi, Ha Young (Department of Neurosurgery, Chonbuk National University Medical School) ;
  • Koh, Bun Jeong (Department of Neurosurgery, Chonbuk National University Medical School) ;
  • Kwak, Yong Guen (Department of Pharmacology, Chonbuk National University Medical School)
  • 이창우 (원광대학교 의과대학 소아과학교실) ;
  • 유승택 (원광대학교 의과대학 소아과학교실) ;
  • 최하영 (전북대학교 의학전문대학원 신경외과학교실) ;
  • 고은정 (전북대학교 의학전문대학원 신경외과학교실) ;
  • 곽용근 (전북대학교 의학전문대학원 약리학교실)
  • Received : 2009.02.03
  • Accepted : 2009.03.13
  • Published : 2009.05.15

Abstract

Purpose : Epilepsy affects more than 0.5% of the world's population. It has a large genetic component and is caused by electrical hyperexcitability in the central nervous system. Despite its prevalence, the disease lacks definitive diagnostic serological biomarkers. To identify potential biomarkers for epilepsy by a convenient method, we analyzed the expression of serum proteins, reflecting alterations in the patient's proteomes. Methods : We compared two-dimensional electrophoretic band patterns of human sera from eight patients with temporal lobe epilepsy (TLE) with those of eight control subjects. The differentially expressed bands were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. esults : Twelve proteins were differentially expressed in the TLE group, of which 6 were identified. Expression of haptoglobin Hp2, PRO2675, immunoglobulin heavy chain constant region gamma 2, an unnamed protein, and three unidentified proteins were upregulated in serum from the patients with TLE, whereas those of major histocompatibility complex (MHC) class I antigen, plasma retinol-binding protein precursor, and three unidentified proteins were downregulated in these patients. After resection of the epileptogenic zone, the expressions of MHC class I antigen, immunoglobulin heavy chain constant region gamma 2, two of the downregulated unidentified proteins, and one of the upregulated unidentified proteins returned to the normal range. Conclusion : The 12 serum proteins in this study are potentially useful biomarkers for the diagnosis and monitoring of TLE.

목적 : 간질은 전세계인구의 0.5%에서 발병하며 유전적 성향이 많고, 이는 중추신경계의 과 흥분성에 기인한다고 알려져 있다. 최근 프로테오믹스기법의 발달로 질병관련 단백질 동정이 활발히 연구되어지고 있다. 더불어, 간질의 진단은 영상기법 및 뇌파 분석 등이 이용되고 있으나, 가장 손쉽고 경제적인 혈청단백질을 이용한 진단법은 확립되어 있지 못하다. 그러므로 본 연구에서는 측두엽 간질환자의 혈장 단백질을 분석하여 간질의 진단 표지단백질 및 질병관련단백질을 발굴하고자 하였다. 방 법 : 저자들은 8명의 측두엽 간질환자와 8명의 정상인 혈청을 비교하였다. 결 과 : 간질환자의 혈청에서 정상 혈청단백질과 유의하고 일관성 있는 차이를 보이는 12개의 단백질을 발견하였다. 그 중, 6개의 단백질을 동정하였고, 6개의 단백질은 동정하지 못하였다. 더불어, haptoglobin Hp2, PRO2675, immunoglobulin heavy chain constant region gamma 2와 1개의 명명되지 않은 단백질 및 3개의 미지의 단백질을 포함한 7개의 단백질은 간질환자의 혈액에서 증가하였다. 반면, MHC class I antigen, plasma retinol-binding protein precursor 및 3개의 미지의 단백질을 포함한 5개의 단백질은 감소하였다. 결 론 : MHC class I antigen, immunoglobulin heavy chain constant region gamma 2 및 수술 전에 증가하였던 3개의 미지의 단백질 중에서 1개, 감소하였던 3개의 미지의 단백질 중에서 2개를 포함한 모두 5개의 단백질은 간질을 일으키는 뇌 부위 절제 후 정상으로 회복되었다. 이는 이런 단백질들을 측두엽 간질의 진단 및 경과관찰인자로서, 활용할 수 있음을 시사한다. 나아가, 이러한 단백질들은 간질의 병태 생리 연구 및 새로운 치료약물개발의 표적 단백질로 활용될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : Wonkwang University

References

  1. Stefan H, Halasz P, Gil-Nagel A, Shorvon S, Bauer G, Ben-Menachem E, et al. Recent advances in the diagnosis and treatment of epilepsy. Eur J Neurol 2001;8:519-39 https://doi.org/10.1046/j.1468-1331.2001.00251.x
  2. Meisler MH, Kearney J, Ottman R, Escayg A. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001;35:567-88 https://doi.org/10.1146/annurev.genet.35.102401.091142
  3. Park SA, Kim TS, Choi KS, Park HJ, Heo K, Lee BI. Chronic activation of CREB and p90RSK in human epileptic hippocampus. Exp Mol Med 2003;35:365-70
  4. Eun JP, Choi HY, Kwak YG. Proteomic analysis of human cerebral cortex in epileptic patients. Exp Mol Med 2004; 36:185-91
  5. Abelev GI. Alpha-fetoprotein: 25 years of study. Tumour Biol 1989;10:63-74 https://doi.org/10.1159/000217596
  6. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med 2001;226:377-408
  7. Hanash SM, Bobek MP, Rickman DS, Williams T, Rouillard JM, Kuick R, et al. Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2002;2:69-75 https://doi.org/10.1002/1615-9861(200201)2:1<69::AID-PROT69>3.0.CO;2-8
  8. Scheler C, Lamer S, Pan Z, Li XP, Salinikow J, Jungblut P. Peptide mass fingerprint sequence coverage from differently stained proteins on two dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 1998;19:918-27 https://doi.org/10.1002/elps.1150190607
  9. Hellman U, Wernstedt C, Gonez J, Heldin CH. Improvement of an "In-Gel" disgestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal Biochem 1995;224:451-5 https://doi.org/10.1006/abio.1995.1070
  10. Shevchenko A, Wilm M, vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68:850-8 https://doi.org/10.1021/ac950914h
  11. Ploegh HL, Orr HT, Strominger JL. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell 1981;24:287-99 https://doi.org/10.1016/0092-8674(81)90318-4
  12. Rammensee HG, Falk K, Rotzschke O. MHC molecules as peptide receptors. Curr Opin Immunol 1993;5:35-44 https://doi.org/10.1016/0952-7915(93)90078-7
  13. Lampson L A. Molecular bases of the immune response to neural antigens. Trends Neurosci. 1997;10:211-6 https://doi.org/10.1016/0166-2236(87)90153-6
  14. Wong GH, Bartlett PF, Clark-Lewis I, Battye F, Schrader JW. Inducible expression of H-2 and Ia antigens on brain cells. Nature 1984;310:688-91 https://doi.org/10.1038/310688a0
  15. Wong GH, Bartlett PF, Clark-Lewis I, McKimm-Breschkin JL, Schrader JW. Interferon-gamma induces the expression of H-2 and Ia antigens on brain cells. J Neuroimmunol 1985; 7:255-78 https://doi.org/10.1016/S0165-5728(84)80026-0
  16. Neumann H, Cavalie A, Jenne DE, Wekerle H. Induction of MHC class I genes in neurons. Science 1995;269:549-52 https://doi.org/10.1126/science.7624779
  17. Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H. Major histocompatibility Complex (MHC) Class I Gene Expression in Single Neurons of the Central Nervous System: Differential Regulation by Interferon (IFN)-gamma and Tumor Necrosis Factor (TNF)-alpha. J Exp Med 1997;185: 305-16 https://doi.org/10.1084/jem.185.2.305
  18. Corriveau RA, Huh GS, Shatz CJ. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 1998;21:505-20 https://doi.org/10.1016/S0896-6273(00)80562-0
  19. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional Requirement for Class I MHC in CNS Development and Plasticity. Science 2000;290:2155-9 https://doi.org/10.1126/science.290.5499.2155
  20. Dorfman JR, Zerrahn J, Coles MC, Raulet DH. The basis for self-tolerance of natural killer cells in beta2-microglobulin- and TAP-1-mice. J Immunol 1997;159:5219-25
  21. Ishii T, Hirota J, Mombaerts P. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 2003;13:394-400 https://doi.org/10.1016/S0960-9822(03)00092-7
  22. Loconto J, Papes F, Chang E, Stowers L, Jones EP, Takada T, et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 2003;112:607-18 https://doi.org/10.1016/S0092-8674(03)00153-3
  23. Blomhoff R. Overview of vitamin A metabolism and function. In: Vitamin A in Health and Disease, edited by Blomhoff R. New York, Basel, Hong Kong: Marcel Dekker Inc, 1994:1-35
  24. Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, et al. The three-dimensional structure of retinol- binding protein. EMBO J 1984;3:1451-4
  25. Calderone V, Berni R, Zanotti G. High-resolution structures of retinol-binding protein in complex with retinol: pH-induced protein structural changes in the crystal state. J Mol Biol 2003;329:841-50 https://doi.org/10.1016/S0022-2836(03)00468-6
  26. Blomhoff R, Green MH, Green JB, Berg T, Norum KR. Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev 1991;71:951-90
  27. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J 1996;10:940-54
  28. Calamita A, Dichi I, Papini-Berto SJ, Dichi JB, Angeleli AY, Vannucchi H, et al. Plasma levels of transthyretin and retinol-binding protein in Child-A cirrhotic patients in relation to protein-calorie status and plasma amino acids, zinc, vitamin A and plasma thyroid hormones. Arq Gastroenterol 1997;34:139-47
  29. Smithies O, Connell GE, Dixon GH. Inheritance of haptoglobin subtypes. Am J Hum Hered 1962;14:14-21
  30. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 1996;42:1589-600
  31. Panter SS, Sadrzadeh SM, Hallaway PE, Haines JL, Anderson VE, Eaton JW. Hypohaptoglobinemia associated with familial epilepsy. J Exp Med 1985;161:748-54 https://doi.org/10.1084/jem.161.4.748
  32. Nezlin R. Combinatorial events in generation of antibody diversity. Comb Chem High Throughput Screen 2001;4:377- 83 https://doi.org/10.2174/1386207013330977
  33. Bengten E, Wilson M, Miller N, Clem LW, Pilstrom L, Warr GW. Immunoglobulin isotypes: structure, function, and genetics. Curr Top Microbiol Immunol 2000;248:189-219
  34. Oxelius VA, Carlsson AM, Aurivillius M. Alternative G1m, G2m and G3m allotypes of IGHG genes correlate with atopic and nonatopic pathways of immune regulation in children with bronchial asthma. Int Arch Allergy Immunol 1998;115: 215-9 https://doi.org/10.1159/000023903
  35. Milili M, Antunes H, Blanco-Betancourt C, Nogueiras A, Santos E, Vasconcelos J, et al. A new case of autosomal recessive agammaglobulinaemia with impaired pre-B cell differentiation due to a large deletion of the IGH locus. Eur J Pediatr 2002;161:479-84 https://doi.org/10.1007/s00431-002-0994-9
  36. Attanasio R, Jayashankar L, Engleman CN, Scinicariello F. Baboon immunoglobulin constant region heavy chains: identification of four IGHG genes. Immunogenetics 2002;54:556- 61 https://doi.org/10.1007/s00251-002-0505-1
  37. Nezlin R, Lefkovits I. Expressed immunoglobulin repertoire of LPS-stimulated splenocytes of unimmunized mice as studied by two-dimensional gel electrophoresis. Mol Immunol 1998;35:1089-96 https://doi.org/10.1016/S0161-5890(98)00104-7