Acknowledgement
Supported by : Ministry of Education, Science and Culture of Japan
References
- Achard, P., Renou, J.-P., Berthome, R., Harberd, N.P., and Genschik, P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656-660 https://doi.org/10.1016/j.cub.2008.04.034
- Alamillo, J.M., and García-Olmedo, F. (2001). Effects of urate, a natural scavenger of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J. 25, 529-540 https://doi.org/10.1046/j.1365-313x.2001.00984.x
- Amicucci, E., Gaschler, K., and Ward, J.M. (1999). NADPH oxidase genes from tomato (Lycopersicon esculentum) and curly-leaf pondweed (Potamogeton crispus). Plant Biol. 1, 524-528 https://doi.org/10.1111/j.1438-8677.1999.tb00778.x
- Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
- Asai, S., and Yoshioka, H. (2008). The role of radical burst via MAPK signaling in plant immunity. Plant Signal. Behavior 3, 920-922 https://doi.org/10.4161/psb.6601
- Asai, S., and Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol. Plant-Microbe Interact. 22, 619-629 https://doi.org/10.1094/MPMI-22-6-0619
- Asai, S., Ohta, K., and Yoshioka, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20, 1390-1406 https://doi.org/10.1105/tpc.107.055855
- Asselbergh, B., Curvers, K., Franca, S.C., Audenaert, K., Vuylsteke, M., van Breusegem, F., and Hofte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144, 1863-1877 https://doi.org/10.1104/pp.107.099226
- Bachmann, M., Shiraishi, N., Campbell, W.H., Yoo, B.C., Harmon, A.C., and Huber, S.C. (1996). Identification of a Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8, 505-517 https://doi.org/10.1105/tpc.8.3.505
-
Banfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnar, G.Z., Krause, K.-H., and Cox, J.A. (2004). Mechanism of
$Ca^{2+}$ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583-18591 https://doi.org/10.1074/jbc.M310268200 - Benschop, J.J., Mohammed, S., O'Flaherty, M., Heck, A.J., Slijper, M., and Menke, F.L. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1192-1214
- Blume, B., Nurnberger, T., Nass, N., and Scheel, D. (2000). Receptor- mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12, 1425-1440 https://doi.org/10.1105/tpc.12.8.1425
- Butt, Y.K.-C., Lum, J.H.-K., and Lo, S.C.-L. (2003). Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216, 762-771
- Chai, H.B., and Doke, N. (1987). Activation of the potential of potato leaf tissue to react hypersensitively to Phytophthora infestans by cytospore germination fluid and the enhancement of this potential by calcium ions. Physiol. Mol. Plant Pathol. 30, 27-37 https://doi.org/10.1016/0885-5765(87)90080-4
- Chico, J.M., Raíces, M., Tellez-Inon, M.T., and Ulloa, R.M. (2002). A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol. 128, 256-270
- Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., and Neill, S.J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J. 24, 667-677 https://doi.org/10.1046/j.1365-313x.2000.00911.x
- Crawford, N.M., Galli, M., Tischner, R., Heimer, Y.M., Okamoto, M., and Mack, A. (2006). Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends Plant Sci. 11, 526-527 https://doi.org/10.1016/j.tplants.2006.09.007
- Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588 https://doi.org/10.1038/29087
- Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 98, 13454-13459 https://doi.org/10.1073/pnas.231178298
- Doke, N. (1983). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23, 345-357 https://doi.org/10.1016/0048-4059(83)90019-X
- Dupuy, C., Ohayon, R., Valent, A., Noel-Hudson, M.-S., Deme, D., and Virion, A. (1999). Purification of a novel flavoprotein involved in the thyroid NADPH oxidase: cloning of the porcine and human cDNAs. J. Biol. Chem. 274, 37265-37269 https://doi.org/10.1074/jbc.274.52.37265
- Durner, J., Wendehenne, D., and Klessig, D.F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95, 10328-10333 https://doi.org/10.1073/pnas.95.17.10328
- Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P., and Martin, G.B. (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 36, 905-917 https://doi.org/10.1046/j.1365-313X.2003.01944.x
- Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., and Loake, G.J. (2005). A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. USA 22, 8054-8059
- Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446 https://doi.org/10.1038/nature01485
- Freymark, G., Diehl, T., Miklis, M., Romeis, T., and Panstruga, R. (2007). Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol. Plant- Microbe Interact. 20, 1213-1221 https://doi.org/10.1094/MPMI-20-10-1213
- Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385-402 https://doi.org/10.1111/j.1364-3703.2007.00465.x
- Garcia-Mata, C., and Lamattina, L. (2003). Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? Trends Plant Sci. 8, 20-26 https://doi.org/10.1016/S1360-1385(02)00009-2
- Gargantini, P.R., Giammaria, V., Grandellis, C., Feingold, S.E., Maldonado, S., and Ulloa, R.M. (2009). Genomic and functional characterization of StCDPK1. Plant Mol. Biol. 70, 153-172 https://doi.org/10.1007/s11103-009-9462-5
- Gilchrist, D.G. (1998). Programmed cell death in plant disease: The purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36, 393-414 https://doi.org/10.1146/annurev.phyto.36.1.393
- Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227 https://doi.org/10.1146/annurev.phyto.43.040204.135923
- Govrin, E.M., and Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751-757 https://doi.org/10.1016/S0960-9822(00)00560-1
- Grant, M., Brown, I., Knight, M., Ainslie, A., and Mansfield, J. (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441-450 https://doi.org/10.1046/j.1365-313x.2000.00804.x
- Greenberg, J.T. (1997). Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525-545 https://doi.org/10.1146/annurev.arplant.48.1.525
- Groom, Q.J., Torres, M.A., Fordham-Skelton, A.P., Hammond- Kosack, K.E., Robinson, N.J., and Jones, J.D.G. (1996). rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 10, 515-522 https://doi.org/10.1046/j.1365-313X.1996.10030515.x
- Guo, F.-Q., Okamoto, M., and Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100-103 https://doi.org/10.1126/science.1086770
- Gupta, R., and Luan, S. (2003). Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132, 1149-1152 https://doi.org/10.1104/pp.103.020792
- Harmon, A.C., Yoo, B.-C., and McCaffery, C. (1994). Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33, 7278-7287 https://doi.org/10.1021/bi00189a032
- Harper, J.F., Huang, J.-F., and Lloyd, S.J. (1994). Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33, 7267-7277 https://doi.org/10.1021/bi00189a031
-
Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding
$Ca^{2+}$ signals through plant protein kinases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 55, 263-288 https://doi.org/10.1146/annurev.arplant.55.031903.141627 - He, Y., Tang, R.-H., Hao, Y., Stevens, R.D., Cook, C.W., Ahn, S.M., Jing, L., Yang, Z., Chen, L., Guo, F., et al. (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305, 1968-1971 https://doi.org/10.1126/science.1098837
- Hong, J.K., Yun, B.-W., Kang, J.-G., Raja, M.U., Kwon, E., Sorhagen, K., Chu, C., Wang, Y., and Loake, G.J. (2008). Nitric oxide function and signalling in plant disease resistance. J. Exp. Bot. 59, 147-154 https://doi.org/10.1093/jxb/erm244
- Ivashuta, S., Liu, J., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., Vance, C.P., Harrison, M.J., and Gantt, J.S. (2005). RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17, 2911-2921 https://doi.org/10.1105/tpc.105.035394
- Jagnandan, D., Church, J.E., Bánfi, B., Stuehr, D.J., Marrero, M.B., and Fulton, D.J. (2007). Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation. J. Biol. Chem. 282, 6494-6507 https://doi.org/10.1074/jbc.M608966200
- Jin, H., Axtell, M.J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B., and Baker, B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev. Cell 3, 291-297 https://doi.org/10.1016/S1534-5807(02)00205-8
- Jin, H., Liu, Y., Yang, K.-Y., Kim, C.Y., Baker, B., and Zhang, S. (2003). Function of a mitogen-activated protein kinase pathway in N gene mediated resistance in tobacco. Plant J. 33, 719-731 https://doi.org/10.1046/j.1365-313X.2003.01664.x
- Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329 https://doi.org/10.1038/nature05286
- Kars, I., Krooshof, G.H., Wagemakers, L., Joosten, R., Benen, J.A., and van Kan, J.A. (2005). Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43, 213-225 https://doi.org/10.1111/j.1365-313X.2005.02436.x
- Kato, H., Asai, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., and Kawakita, K. (2008). Involvement of NbNOA1 in NO production and defense responses in INF1-treated Nicotiana benthamiana. J. Gen. Plant Pathol. 74, 15-23 https://doi.org/10.1007/s10327-007-0054-4
- Katou, S., Yamamoto, A., Yoshioka, H., Kawakita, K., and Doke, N. (2003). Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J. Gen. Plant Pathol. 69, 161-168
- Katou, S., Yoshioka, H., Kawakita, K., Rowland, O., Jones, J.D.G., Mori, H., and Doke, N. (2005). Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol. 139, 1914-1926 https://doi.org/10.1104/pp.105.066795
-
Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., and Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with
$Ca^2^+$ binding motifs. Plant Cell 10, 255-266 https://doi.org/10.1105/tpc.10.2.255 -
Kobayashi, M., Kawakita, K., Maeshima, M., Doke, N., and Yoshioka, H. (2006). Subcellular localization of Strboh proteins and NADPH-dependent
$O_2$ -generating activity in potato tuber tissues. J. Exp. Bot. 57, 1373-1379 https://doi.org/10.1093/jxb/erj113 - Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H. (2007). Calciumdependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19, 1065-1080 https://doi.org/10.1105/tpc.106.048884
- Kobayashi, M., Yoshioka, M., Asai, S., Kuchimura, K., Mori, H., Doke N., and Yoshioka, H. (2009). Calcium-dependent protein kinase-induced oxidative burst confers resistance to late blight but increases susceptibility to early blight pathogen in potato. (in submission)
- Kunz, C., Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E., Vedel, R., Pugin, A., et al. (2006). Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol. 170, 537-550 https://doi.org/10.1111/j.1469-8137.2006.01682.x
- Kwak, J.M., Mori, I.C., Pei, Z-.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D.G., and Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623-2633 https://doi.org/10.1093/emboj/cdg277
- Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., and Pugin, A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant,Cell 14, 2627-2641 https://doi.org/10.1105/tpc.005579
- Lecourieux, D., Raneva, R., and Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytol. 171, 249-269 https://doi.org/10.1111/j.1469-8137.2006.01777.x
- Lee, J., Rudd, J.J., Macioszek, V.K., and Scheel, D. (2004). Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279, 22440-22448 https://doi.org/10.1074/jbc.M401099200
- Lindermayr, C., Saalbach, G., and Durner, J. (2005). Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol. 137, 921-930 https://doi.org/10.1104/pp.104.058719
- Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2004). Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J. 38, 800-809 https://doi.org/10.1111/j.1365-313X.2004.02085.x
- Ludwig, A.A., Romeis, T., and Jones, J.D.G. (2004). CDPKmediated signalling pathways: specificity and cross-talk. J. Exp. Bot. 55, 181-188 https://doi.org/10.1093/jxb/erh008
- Ludwig, A.A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D.G., and Romeis, T. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. USA 102, 10736-10741 https://doi.org/10.1073/pnas.0502954102
- MAPK Group (2002). Mitogen-activated protein kinase cascades inplants: a new nomenclature. Trends Plant Sci. 7, 301-308 https://doi.org/10.1016/S1360-1385(02)02302-6
- McCubbin, A.G., Ritchie, S.M., Swanson, S.J., and Gilroy, S. (2004). The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J. 39, 206-218 https://doi.org/10.1111/j.1365-313X.2004.02121.x
- Miura, Y., Yoshioka, H., and Doke, N. (1995). An autophotographic determination of the active oxygen generation in potato tuber discs during hypersensitive response to fungal infection or elicitor. Plant Sci. 105, 45-52 https://doi.org/10.1016/0168-9452(94)04040-N
- Moreau, M., Lee, G.I., Wang, Y., Crane, B.R., and Klessig, D.F. (2008). AtNOS/A1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J. Biol. Chem. 283, 32957-32967 https://doi.org/10.1074/jbc.M804838200
-
Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F., Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., Ecker, J.R., et al. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and
$Ca^2^+$ -permeable channels and stomatal closure. PLoS Biol. 4, 1749-1761 - Murillo, I., Jaeck, E., Cordero, M.J., and San Segundo, B. (2001). Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol. Biol. 45, 145-158 https://doi.org/10.1023/A:1006430707075
- Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N.P., and Jones, J.D.G. (2008). DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650-655 https://doi.org/10.1016/j.cub.2008.03.060
- Nuhse, T.S., Bottrill, A.R., Jones, A.M., and Peck, S.C. (2007). Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J. 51, 931-940 https://doi.org/10.1111/j.1365-313X.2007.03192.x
-
Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., et al. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by
$Ca^2^+$ and phosphorylation. J. Biol. Chem. 283, 8885-8892 https://doi.org/10.1074/jbc.M708106200 - Pedley, K.F., and Martin, G.B. (2005). Role of mitogen-activated protein kinases in plant immunity. Curr. Opin. Plant Biol. 8, 541-547 https://doi.org/10.1016/j.pbi.2005.07.006
- Pitzschke, A., Djamei, A., Bitton, F., and Hirt, H. (2009). A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol. Plant 2, 120-137 https://doi.org/10.1093/mp/ssn079
- Plant Pathology (2005). G.N., Agrios, ed., (Burlington, MA: Elsevier Academic Press)
- Poinssot, B., Vandelle, E., Bentejac, M., Adrian, M., Levis, C., Brygoo, Y., Garin, J., Sicilia, F., Coutos-Thevenot, P., and Pugin, A. (2003). The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant-Microbe Interact. 16, 553-564 https://doi.org/10.1094/MPMI.2003.16.6.553
- Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., and Delledonne, M. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 16, 1094-1105 https://doi.org/10.1094/MPMI.2003.16.12.1094
- Ren, D., Yang, H., and Zhang, S. (2002). Cell death mediated by mitogen-activated protein kinase pathway is associated with the generation of hydrogen peroxide in Arabidopsis. J. Biol. Chem. 277, 559-565 https://doi.org/10.1074/jbc.M109495200
- Ren, D., Yang, K.-Y., Li, G., Liu, Y., and Zhang, S. (2006). Activation of Ntf4, a tobacco MAPK, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol. 141, 1482-1493 https://doi.org/10.1104/pp.106.080697
- Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones, J.D.G. (1999). Rapid Avr9- and Cf9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273-287 https://doi.org/10.1105/tpc.11.2.273
- Romeis, T., Ludwig., A.A., Martin, R., and Jones, J.D.G. (2001). Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 20, 5556-5567 https://doi.org/10.1093/emboj/20.20.5556
- Romero-Puertas, M.C., Perazzolli, M., Zago, E.D., and Delledonne, M. (2004). Nitric oxide signalling functions in plant-pathogen interactions. Cell. Microbiol. 9, 795-803
- Sagi, M., and Fluhr, R. (2001). Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 1281-1290 https://doi.org/10.1104/pp.126.3.1281
- Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16, 616-628 https://doi.org/10.1105/tpc.019398
- Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327 https://doi.org/10.1046/j.1365-313x.2000.00787.x
- Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., and Kawakita, K. (2006). Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 47, 689-697 https://doi.org/10.1093/pcp/pcj038
- Sasabe, M., Soyano, T., Takahashi, Y., Sonobe, S., Igarashi, H., Itoh T. J., Hidaka, M., and Machida, Y. (2006). Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev. 20, 1004-1014 https://doi.org/10.1101/gad.1408106
- Seo, S., Sano, H., and Ohashi, Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen- activated protein kinase. Plant Cell 11, 289-298 https://doi.org/10.1105/tpc.11.2.289
- Serrander, L., Jaquet, V., Bedard, K., Plastre, O., Hartley, O., Arnaudeau, S., Demaurex, N., Schlegel, W., and Krause, K.H. (2007). NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89, 1159-1167 https://doi.org/10.1016/j.biochi.2007.05.004
- Simon-Plas, F., Elmayan, T., and Blein, J.-P. (2002). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 31, 137-147 https://doi.org/10.1046/j.1365-313X.2002.01342.x
-
Sokolovski, S., and Blatt, M.R. (2004). Nitric oxide block of outwardrectifying
$K^+$ channels indicates direct control by protein nitrosylationin guard cells. Plant Physiol. 136, 4275-4284 https://doi.org/10.1104/pp.104.050344 - Stamler, J.S., Singel, D.J., and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898-1902 https://doi.org/10.1126/science.1281928
- Sumimoto, H. (2008). Structure, regulation and evolution of Noxfamily NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3249-3277
- Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952-956 https://doi.org/10.1126/science.1156970
- Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K., and Dolan, L. (2008). Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241-1244 https://doi.org/10.1126/science.1152505
- Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., Nunoi, H., and Sumimoto, H. (2003). Novel human homologues of p47phox and p67phox participate in activation of superoxideproducing NADPH oxidases. J. Biol. Chem. 278, 25234-25246 https://doi.org/10.1074/jbc.M212856200
- Tanaka, S., Ishihama, N., Yoshioka, H., Huser, A., O’Connell, R., Tsuji, G., Tsuge, S., and Kubo, Y. (2009). The Colletotrichum orbiculare ssd1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. Plant Cell 21, 2517-2526 https://doi.org/10.1105/tpc.109.068023
- ten Have, A., Mulder, W., Visser, J., and van Kan, J.A. (1998). The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant-Microbe Interact. 11, 1009-1016 https://doi.org/10.1094/MPMI.1998.11.10.1009
- Torres, M.A., Onouchi, H., Hamada, S., Machida, C., Hammond- Kosack, K.E., and Jones, J.D.G. (1998). Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365-370 https://doi.org/10.1046/j.1365-313X.1998.00136.x
- Torres, M.A., Dangl, J.L., and Jones, J.D.G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517-522 https://doi.org/10.1073/pnas.012452499
- Torres, M.A., Jones, J.D.G., and Dangl, J.L. (2005). Pathogeninduced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37, 1130-1134 https://doi.org/10.1038/ng1639
- Torres, M.A., Jones J.D.G., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378 https://doi.org/10.1104/pp.106.079467
- van Baarlen, P., Woltering, E.J., Staats, M., and van Kan, J.A.L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8, 41-54 https://doi.org/10.1111/j.1364-3703.2006.00367.x
- Vandelle, E., Poinssot, B., Wendehenne, D., Bentejac, M., and Pugin, A. (2006). Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol. Plant-Microbe Interact. 19, 429-440 https://doi.org/10.1094/MPMI-19-0429
- Wendehenne, D., Pugin, A., Klessig, D.F., and Durner, J. (2001). Nitric oxide: Comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6, 177-183 https://doi.org/10.1016/S1360-1385(01)01893-3
- Wendehenne, D., Durner, J., and Klessig, D.F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 7, 449-455 https://doi.org/10.1016/j.pbi.2004.04.002
- Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., et al. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19, 4022-4034 https://doi.org/10.1105/tpc.107.055624
- Wu, G., Shortt, B.J., Lawrence, E.B., Levine, E.B., Fitzsimmons, K.C., and Shah, D.M. (1995). Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7, 1357-1368 https://doi.org/10.1105/tpc.7.9.1357
-
Wu, G., Shortt, B.J., Lawrence, E.B., León, J., Fitzsimmons, K.C., Levine, E.B., Raskin, I., and Shah, D.M. (1997). Activation of host defense mechanisms by elevated production of
$H_2O_2$ in transgenic plants. Plant Physiol. 115, 427-435 https://doi.org/10.1104/pp.115.2.427 - Xing, T., Wang, X.J., Malik, K., and Miki, B.L. (2001). Ectopic expression of an Arabidopsis calmodulin-like domain protein kinase-enhanced NADPH oxidase activity and oxidative burst in tomato protoplasts. Mol. Plant-Microbe Interact. 14, 1261-1264 https://doi.org/10.1094/MPMI.2001.14.10.1261
- Yamamizo, C., Kuchimura, K., Kobayashi, A., Katou, S,. Kawakita, K., Jones, J.D.G., Doke, N., and Yoshioka, H. (2006). Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 140, 681-692 https://doi.org/10.1104/pp.105.074906
- Yamamoto, A., Katou, S., Yoshioka, H., Doke, N., and Kawakita, K. (2003). Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J. Gen. Plant Pathol. 69, 218-229 https://doi.org/10.1007/s10327-003-0039-x
- Yang, K.-Y., Liu, Y., and Zhang, S. (2001). Activation of a mitogenactivated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98, 741-746 https://doi.org/10.1073/pnas.98.2.741
- Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R., and Lee, H.S.P. (1999). Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 991-1001 https://doi.org/10.1023/A:1006170512542
- Yoon, G.M., Dowd, P.E., Gilroy, S., and McCubbina, A.G. (2006). Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18, 867-878 https://doi.org/10.1105/tpc.105.037135
- Yoshie, Y., Goto, K., Takai, R., Iwano, M., Takayama, S., Isogai, A., and Che, F.-S. (2005). Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotech. 22, 127-135 https://doi.org/10.5511/plantbiotechnology.22.127
- Yoshioka, H., Sugie, K., Park, H.-J., Maeda, H., Tsuda, N., Kawakita, K., and Doke, N. (2001). Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant-Microbe Interact. 14, 725-736 https://doi.org/10.1094/MPMI.2001.14.6.725
- Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D.G., and Doke, N. (2003). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15, 706-718 https://doi.org/10.1105/tpc.008680
- Zago, E., Morsa, S., Dat, J.F., Alard, P., Ferrarini, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2006). Nitric oxideand hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol. 141, 404-411 https://doi.org/10.1104/pp.106.078444
- Zaninotto, F., La Camera, S., Polverari, A., and Delledonne, M. (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol. 141, 379-383 https://doi.org/10.1104/pp.106.078857
- Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., and Durner, J. (2004). Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA 101, 15811-15816 https://doi.org/10.1073/pnas.0404536101
- Zemojtel, T., Frohlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P., et al. (2006). Plant nitric oxide synthase: A never-ending story? Trends Plant Sci. 11, 524-525 https://doi.org/10.1016/j.tplants.2006.09.008
- Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48 kD MAP kinase in tobacco. Plant Cell 9, 809-824 https://doi.org/10.1105/tpc.9.5.809
- Zhao, M.-G., Tian, Q.-Y., and Zhang, W.-H. (2007). Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 144, 206-217 https://doi.org/10.1104/pp.107.096842
- Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767 https://doi.org/10.1038/nature02485
- Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EFTu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760 https://doi.org/10.1016/j.cell.2006.03.037
Cited by
- AGC Kinase OsOxi1 Positively Regulates Basal Resistance through Suppression of OsPti1a-Mediated Negative Regulation vol.51, pp.10, 2009, https://doi.org/10.1093/pcp/pcq132
- ROS signaling in the hypersensitive response : When, where and what for? vol.5, pp.4, 2009, https://doi.org/10.4161/psb.5.4.10793
- Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.) vol.232, pp.3, 2009, https://doi.org/10.1007/s00425-010-1203-0
- Role of nitric oxide and reactive oxygen species in disease resistance to necrotrophic pathogens vol.5, pp.7, 2009, https://doi.org/10.4161/psb.5.7.11899
- Roles of calcineurin B-like protein-interacting protein kinases in innate immunity in rice vol.5, pp.8, 2010, https://doi.org/10.4161/psb.5.8.12407
- Cellular damage induced by a sequential oxidative treatment on Penicillium digitatum vol.109, pp.4, 2009, https://doi.org/10.1111/j.1365-2672.2010.04775.x
- TaDAD2, a Negative Regulator of Programmed Cell Death, Is Important for the Interaction Between Wheat and the Stripe Rust Fungus vol.24, pp.1, 2011, https://doi.org/10.1094/mpmi-06-10-0131
- Influence of nitric oxide and reactive oxygen species on development of lettuce downy mildew in Lactuca spp. vol.129, pp.2, 2011, https://doi.org/10.1007/s10658-010-9626-9
- Calmodulin-Dependent Activation of MAP Kinase for ROS Homeostasis in Arabidopsis vol.41, pp.6, 2009, https://doi.org/10.1016/j.molcel.2011.02.029
- A plastidic glucose-6-phosphate dehydrogenase is responsible for hypersensitive response cell death and reactive oxygen species production vol.77, pp.3, 2011, https://doi.org/10.1007/s10327-011-0304-3
- Dual role of nitric oxide in Solanum spp.–Oidium neolycopersici interactions vol.74, pp.None, 2009, https://doi.org/10.1016/j.envexpbot.2011.04.016
- The Role of Radical Burst in Plant Defense Responses to Necrotrophic Fungi vol.11, pp.8, 2009, https://doi.org/10.1016/s2095-3119(12)60127-0
- Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens vol.63, pp.12, 2009, https://doi.org/10.1093/jxb/ers116
- Nitric Oxide-Mediated Stress Imprint in Potato as an Effect of Exposure to a Priming Agent vol.25, pp.11, 2009, https://doi.org/10.1094/mpmi-02-12-0044-r
- Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence‐related genes and systemic acquired resistance in tobacco vol.35, pp.12, 2012, https://doi.org/10.1111/j.1365-3040.2012.02539.x
- Comparative Transcriptome Analysis of the Necrotrophic Fungus Ascochyta rabiei during Oxidative Stress: Insight for Fungal Survival in the Host Plant vol.7, pp.3, 2012, https://doi.org/10.1371/journal.pone.0033128
- Paranoid potato : Phytophthora-resistant genotype shows constitutively activated defense vol.7, pp.3, 2009, https://doi.org/10.4161/psb.19149
- Reactive oxygen species generation and signaling in plants vol.7, pp.12, 2009, https://doi.org/10.4161/psb.22455
- Increased Resistance Against Citrus Canker Mediated by a Citrus Mitogen-Activated Protein Kinase vol.26, pp.10, 2009, https://doi.org/10.1094/mpmi-04-13-0122-r
- Hypersensitive response - A biophysical phenomenon of producers vol.3, pp.2, 2013, https://doi.org/10.1556/eujmi.3.2013.2.3
- A Translationally Controlled Tumor Protein Negatively Regulates the Hypersensitive Response in Nicotiana benthamiana vol.54, pp.8, 2013, https://doi.org/10.1093/pcp/pct090
- Trichoderma asperelloides Suppresses Nitric Oxide Generation Elicited by Fusarium oxysporum in Arabidopsis Roots vol.27, pp.4, 2014, https://doi.org/10.1094/mpmi-06-13-0160-r
- Robust anti‐oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst vol.201, pp.2, 2009, https://doi.org/10.1111/nph.12530
- Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana vol.36, pp.5, 2009, https://doi.org/10.1007/s10529-014-1462-0
- SEC14 Phospholipid Transfer Protein Is Involved in Lipid Signaling-Mediated Plant Immune Responses in Nicotiana benthamiana vol.9, pp.5, 2009, https://doi.org/10.1371/journal.pone.0098150
- Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii vol.99, pp.10, 2009, https://doi.org/10.1007/s00253-014-6367-2
- Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress vol.6, pp.None, 2009, https://doi.org/10.3389/fpls.2015.00463
- Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance vol.66, pp.10, 2009, https://doi.org/10.1093/jxb/erv089
- Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00187
- Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana vol.7, pp.None, 2009, https://doi.org/10.3389/fpls.2016.00689
- Arms race: diverse effector proteins with conserved motifs vol.14, pp.2, 2019, https://doi.org/10.1080/15592324.2018.1557008
- A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones vol.9, pp.3, 2009, https://doi.org/10.1007/s13205-019-1638-3
- Spatial and Temporal Calcium Signaling and Its Physiological Effects in Moso Bamboo under Drought Stress vol.10, pp.3, 2009, https://doi.org/10.3390/f10030224
- Mechanisms of aerenchyma formation in maize roots vol.14, pp.14, 2019, https://doi.org/10.5897/ajar2016.11259
- Effect of the AM Fungus Sieverdingia tortuosa on Common Vetch Responses to an Anthracnose Pathogen vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.542623
- Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus vol.18, pp.5, 2009, https://doi.org/10.1111/pbi.13289
- The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava vol.19, pp.4, 2009, https://doi.org/10.1111/pbi.13505
- The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production vol.87, pp.23, 2009, https://doi.org/10.1128/aem.01601-21
- Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips vol.425, pp.None, 2009, https://doi.org/10.1016/j.jhazmat.2021.127964