Recent Research Trends of Catalytic Conversion of CO2 to High-value Chemicals

촉매 전환을 이용한 이산화탄소의 고부가 가치제품 생산에 대한 최근 연구 동향

  • Song, Ki-Hun (Department of Chemical Engineering, POSTECH) ;
  • Ryu, Jun-hyung (Department of Energy, Systems and Environment, Dongguk University) ;
  • Chung, Jong-Sik (Department of Chemical Engineering, POSTECH)
  • 송기훈 (포항공과대학교 화학공학과) ;
  • 류준형 (동국대학교 에너지환경대학 에너지환경시스템학과) ;
  • 정종식 (포항공과대학교 화학공학과)
  • Received : 2009.04.03
  • Accepted : 2009.05.30
  • Published : 2009.10.31

Abstract

Reducing the emission of carbon dioxide, which is the main contributor to the green house effect, is becoming a global hot issue. Great attention has been thus given to utilization of carbon dioxide rather than just capturing and isolating it because it could convert carbon dioxide to high-value chemicals. In this paper, recent research trends are investigated on the catalytic conversion of carbon dioxide to syngas in the context of $CH_4$, dry-reforming, trireforming, and the electro-catalytic conversion of carbon dioxide through SOFC(Solid Oxide Fuel Cell) system. Research trends for utilizing syngas to high-value-added useful products, mainly fuel such as DME(Dimethyl Ether) are also discussed.

온실 가스의 주원인인 이산화탄소 발생의 저감은 범세계적으로 중요한 문제가 되었다. 이산화탄소를 단순히 분리하고 외부와 격리시키는 것보다는 이를 이용하여 고부가가치의 화학제품으로 전환 가능하다는 점에서 이산화탄소의 자원화에 대해 많은 관심을 받고 있다. 본 논문에서는 이산화탄소의 촉매 전환을 통한 합성가스 생산의 방법으로서 이산화탄소 개질, 삼중 개질 그리고 내부 개질 고체 산화형 연료 전지(Solid Oxide Fuel Cell) 시스템과 연계하여 전기와 합성가스를 동시에 생산하는 기술로 정하고 이에 대한 최근 연구 동향을 정리하였다. 또한 합성가스로부터 Fischer-Tropsch 합성을 통한 장쇄 탄화수소 생성과 Dimethyl Ether(DME) 생성을 중심으로 한 유용한 화학제품을 생산에 관한 연구 동향을 포함하였다.

Keywords

References

  1. Bradford, M. C. J. and VanNice, M. A., '$CO_{2}$ Reforming of $CH_{4}$,' Catal. Rev.-Sci. Eng. 41, 1(1999)
  2. Hu, Y. H. and Ruckenstein, E., "Binary MgO-based Solid Solution Catalysts for Methane Conversion to Syngas," Catal. Rev.- Sci. Eng. 44, 423(2002) https://doi.org/10.1081/CR-120005742
  3. Assabumrungrat, S., Laosiripojana, N. and Piroonlerkgul, P., "Determination of the Boundary of Carbon Formation for Dry Reforming of Methane in a Solid Oxide Fuel Cell," J. Power Sources 159, 1274(2006) https://doi.org/10.1016/j.jpowsour.2005.12.010
  4. Xiancai, L., Shuigen, L., Yifeng, Y., Min, W. and Fei, H., 'Studies on Coke Formation and Coke Species of Nickel-based Catalysts in CO2 Reforming of CH4,' Catal. Lett. 118, 59(2007) https://doi.org/10.1007/s10562-007-9140-7
  5. Snoeck, J. W., Froment, G. F. and Fowles, M., "Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-state Growth," J. Catal. 169, 240(1997) https://doi.org/10.1006/jcat.1997.1634
  6. Trimm, D. L., 'Catalysts for the Control of Coking During Steam Reforming,' Elsevier Science Bv, pp. 3-10(1999) https://doi.org/10.1016/S0920-5861(98)00401-5
  7. Rostrupnielsen, J. R. and Hansen, J. H. B., "$CO_{2}$ Reforming of Methane over Transition Metals," J. Catal. 144, 38(1993) https://doi.org/10.1006/jcat.1993.1312
  8. Verykios, X. E., 'Mechanistic Aspects of the Reaction of $CO_{2}$ Reforming of Methane over Rh/$AI_{2}$$O_{3}$ Catalyst,' Appl. Catal. A: Gen., 255, 101(2003) https://doi.org/10.1016/S0926-860X(03)00648-3
  9. Wisniewski, M., Boreve, A. and Gein, P., "Catalytic $CO_{2}$ Reforming of Methane over Ir/$Ce_{0.9}$$Gd_{0.1}$$O_{2-$\chi$}$," Catal. Commun., 6, 596(2005) https://doi.org/10.1016/j.catcom.2005.05.008
  10. Qin, D. and Lapszewicz, J., 'Study of Mixed Steam and $CO_{2}$ Reforming of $CH_{4}$ to Syngas on MgO-supported Metals,' Elsevier Science Bv, 51-560(1994) https://doi.org/10.1016/0920-5861(94)80179-7
  11. Tomishige, K., Yamazaki, O., Chen, Y. G., Yokoyama, K., Li, X. H. and Fujimoto, K., 'Development of Ultra-stable Ni Satalysts for $CO_{2}$ Reforming of Methane,' Elsevier Science Bv, 35-39(1998) https://doi.org/10.1016/S0920-5861(98)00238-7
  12. Tsipouriari, V. A. and Verykios, X. E., "Kinetic Study of the Catalytic Reforming of Methane with Carbon Dioxide to Synthesis Gas over Ni/$$La_{2}$O_{3}$ Catalyst," Catal. Today 64, 83(2001) https://doi.org/10.1016/S0920-5861(00)00511-3
  13. Chen, Y. G., Yamazaki, O., Tomishige, K. and Fujimoto, K., "Noble Metal Promoted $$Ni_{0.03}$Mg_{0.97}$Solid Solution Catalysts for the Reforming of CH4 with $CO_{2}$," Catal. Lett. 39, 91(1996) https://doi.org/10.1007/BF00813736
  14. Tang, S., Ji, L., Lin, J., Zeng, H. C., Tan, K. L. and Li, K., " CO2 Reforming of Methane to Synthesis Gas over Sol-gel-made Ni/$\gamma$$AL_2{O_{3}}$Catalysts from OrganoMetallic Precursors,"J.Catal. 194, 424(2000) https://doi.org/10.1006/jcat.2000.2957
  15. Zhang, Z. L. and Verykios, X. E., 'Carbon-dioxide Reforming of Methane to Synthesis Gas over Supported Ni Catalysts,' Elsevier Science Bv, 589-595(1994) https://doi.org/10.1016/0920-5861(94)80183-5
  16. De Lima, S. M., Pena, M. A., Fierro, J. L. G. and Assaf, J. M., "La1-xCaxNiO3 Perovskite Oxides: Characterization and Catalytic Reactivity in Dry Reforming of Methane," Catal. Lett. 124, 195 (2008) https://doi.org/10.1007/s10562-008-9484-7
  17. Gallego, G. S., Mondrag, F., Barrault, J., Tatibou, J.-M. and Batiot- Dupeyrat, C., "$CO_{2}$Reforming of $CH_{4}$ over La-Ni Based Perovskite Precursors," Appl. Catal. A: Gen., 311, 164(2006) https://doi.org/10.1016/j.apcata.2006.06.024
  18. Goldwasser, M. R., Rivas, M. E., Pietri, E., Peez-Zurita, M. J., Cubeiro, M. L., Gingembre, L., Leclercq, L. and Leclercq, G., "Perovskites as Catalysts Precursors: $CO_{2}$ Reforming of $CH_{4}$ on $Ln_{1-\chi}Ca_{\chi}Ru_{0.8}Ni_{0.2}$O3 (Ln=La, Sm, Nd)," Appl. Catal. A: Gen., 255, 45(2003) https://doi.org/10.1016/S0926-860X(03)00643-4
  19. Guo, J., Lou, H., Zhu, Y. and Zheng, X., "La-based Perovskite Precursors Preparation and Its Catalytic Activity for $CO_{2}$ Reforming of $CH_{4}$," Mater. Lett. 57, 4450(2003) https://doi.org/10.1016/S0167-577X(03)00341-0
  20. Lima, S. M., Assaf, J. M., Pe, M. A. and Fierro, J. L. G., "Structural Features of $La_{1-\chi}Ce_{\chi}NiO_{3}$ Mixed Oxides and Performance for the Dry Reforming of Methane," Appl. Catal. A: Gen., 311, 94 (2006) https://doi.org/10.1016/j.apcata.2006.06.010
  21. Rivas, M. E., Fierro, J. L. G., Goldwasser, M. R., Pietri, E., Perez- Zurita, M. J., Griboval-Constant, A. and Leclercq, G., "Structural Features and Performance of $LaNi_{1-\chi}Rh_{\chi}O_{3}$ System for the Dry Reforming of Methane," Appl. Catal. A-Gen. 344, 10(2008) https://doi.org/10.1016/j.apcata.2008.03.023
  22. Rivas, M. E., Fierro, J. L. G., Guil-Lopez, R., Pena, M. A., La Parola, V. and Goldwasser, M. R., 'Preparation and Characterization of Nickel-based Mixed-oxides and Their Performance for Catalytic Methane Decomposition,' Elsevier Science Bv, 367-373(2008) https://doi.org/10.1016/j.cattod.2007.12.045
  23. Valderrama, G., Kiennemann, A. and Goldwasser, M. R., 'Dry Reforming of CH4 over Solid Solutions of $LaNi_{1-\chi}Co_{\chi}O_{3}$,' Catal. Today 133-135, 142(2008) https://doi.org/10.1016/j.cattod.2007.12.069
  24. Crisafulli, C., Scire, S., Maggiore, R., MiNico, S. and Galvagno, S., "$CO_2$ Reforming of Methane over Ni-Ru and Ni-Pd Bimetallic Catalysts," Catal. Lett. 59, 21(1999) https://doi.org/10.1023/A:1019031412713
  25. Crisafulli, C., Scire, S., MiNico, S. and Solarino, L., 'Ni-Ru Bimetallic Catalysts for the CO2 Reforming of Methane,' Appl. Catal. A: Gen., 225, 1(2002) https://doi.org/10.1016/S0926-860X(01)00585-3
  26. Zhang, J., Wang, H. and Dalai, A. K., 'Effects of Metal Content on Activity and Stability of Ni-Co Bimetallic Catalysts for $CO_2$ Reforming of CH4,' Appl. Catal. A: Gen., 339, 121(2008) https://doi.org/10.1016/j.apcata.2008.01.027
  27. Laosiripojana, N. and Assabumrungrat, S., "Catalytic Dry Reforming of Methane over High Surface Area Ceria," Appl. Catal. B: Environ., 60, 107(2005) https://doi.org/10.1016/j.apcatb.2005.03.001
  28. Wang, J. B., Hsiao, S.-Z. and Huang, T.-J., "Study of Carbon Dioxide Reforming of Methane over Ni/Yttria-doped Ceria and Effect of Thermal Treatments of Support on the Activity Behaviors," Appl. Catal. A: Gen., 246, 197(2003) https://doi.org/10.1016/S0926-860X(03)00054-1
  29. Zhang, S., Wang, J. and Wang, X., "Effect of Calcination Temperature on Structure and Performance of Ni/$TiO_{2}SiO_{2}$ Catalyst for $CO_{2}$ Reforming of Methane," Journal of Natural Gas Chemistry 17, 179(2008) https://doi.org/10.1016/S1003-9953(08)60048-1
  30. Osaki, T. and Mori, T., "Role of Potassium in Carbon-free CO2 Reforming of Methane on K-Promoted Ni/$AI_{2}O_{3}$Catalysts," J. Catal. 204, 89(2001) https://doi.org/10.1006/jcat.2001.3382
  31. Arena, F., Frusteri, F. and Parmaliana, A., "Alkali Promotion of Ni/MgO Catalysts, " Applied Catalysis A: General 187, 127(1999) https://doi.org/10.1016/S0926-860X(99)00196-9
  32. Horiuchi, T., Sakuma, K., Fukui, T., Kubo, Y., Osaki, T. and Mori, T., "Suppression of Carbon Deposition in the $CO_{2}$ Reforming of $CH_{4}$ by Adding Basic Metal Oxides to a Ni/$AL_{2}O_{3}$ Catalyst," Appl. Catal. A: Gen., 144, 111(1996) https://doi.org/10.1016/0926-860X(96)00100-7
  33. Laosiripojana, N., Sutthisripok, W. and Assabumrungrat, S., "Synthesis Gas Production from Dry Reforming of Methane over $CeO_{2}$ Doped Ni/$AL_{2}O_{3}$: Influence of the Doping Ceria on the Resistance toward Carbon Formation," Chem. Eng. J., 112, 13(2005) https://doi.org/10.1016/j.cej.2005.06.003
  34. Borowiecki, T. and Go cebiowski, A., "Influence of Molybdenum and Tungsten Additives on the Properties of Nickel Steam Reforming Catalysts," Catal. Lett. 25, 309(1994) https://doi.org/10.1007/BF00816310
  35. Chen, X. J., Khor, K. A. and Chan, S. H., "Suppression of Carbon Deposition at CeO2-modified Ni/YSZ Anodes in Weakly Humidified CH4 at 850," Electrochem. Solid State Lett., 8, A79 (2005) https://doi.org/10.1149/1.1843791
  36. Choi, J.-E., Kim, H.-R., Choi, J.-S. and Cheong, J.-S., "Additives for Suppressing Coke Formation in the Hydrocarbon Reforming," Korea Patent (applying) 10-2008-0044767(2008)
  37. Halmann, M. and Steinfeld, A., "Fuel Saving, Carbon Dioxide Emission Avoidance, and Syngas Production by Tri-Reforming of Flue Gases from Coal- and Gas-fired Power Stations, and by the Carbothermic Reduction of Iron Oxide," Energy 31, 3171 (2006) https://doi.org/10.1016/j.energy.2006.03.009
  38. Kang, J. S., Kim, D. H., Lee, S. D., Hong, S. I. and Moon, D. J., "Nickel-based Tri-reforming Catalyst for the Production of Synthesis Gas," Appl. Catal. A-Gen. 332, 153(2007) https://doi.org/10.1016/j.apcata.2007.08.017
  39. Lee, S.-H., Cho, W., Ju, W.-S., Cho, B.-H., Lee, Y.-C. and Baek, Y.-S., "Tri-reforming of $CH_{4}$ using $CO_{2}$ for Production of Synthesis Gas to Dimethyl Ether," Catal. Today 87, 133(2003) https://doi.org/10.1016/j.cattod.2003.10.005
  40. Song, C. and Pan, W., "Tri-reforming of Methane: A Novel Concept for Catalytic Production of Industrially Useful Synthesis Gas with Desired $H_{2}$/CO Ratios," Catal. Today 98, 463(2004) https://doi.org/10.1016/j.cattod.2004.09.054
  41. Li, Y., Wang, Y., Zhang, X. and Mi, Z., "Thermodynamic Analysis of Autothermal Steam and CO2 Reforming of Methane," International Journal of Hydrogen Energy 33, 2507(2008) https://doi.org/10.1016/j.ijhydene.2008.02.051
  42. Kendall, S. C. S. K., High Temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 1-3(2003)
  43. Kendall, S. C. S. K., High temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 89-91(2003)
  44. Kendall, S. C. S. K., High temperature Solid Oxide Fuel Cells - Fundamentals, Design and Application, Elsevier Ltd, 149-152 (2003)
  45. Dicks, J. L. A., "Fuel Cell Systems Explains," John Wiley & Sons Ltd, 164(2002)
  46. Zhang, X., Ohara, S., Chen, H. and Fukui, T., "Conversion of Methane to Syngas in a Solid Oxide Fuel Cell with Ni-SDC Anode and LSGM Electrolyte," Fuel 81, 989(2002) https://doi.org/10.1016/S0016-2361(02)00012-1
  47. Wang, W., Jiang, S. P., Tok, A. I. Y. and Luo, L., "GDC-impregnated Ni Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells," J. Power. Sources., 159, 68(2006) https://doi.org/10.1016/j.jpowsour.2006.04.051
  48. Douvartzides, S. and Tsiakaras, P., "Ethanol and Methane Fueled Solid Oxide Fuel Cells: A Comparative Study," IoNics 7, 232(2001) https://doi.org/10.1007/BF02419235
  49. Fischer, K., Rzepka, M., Stimming, U., Biermann, J. W., Johannaber, M. and Wallentowitz, H., "Performance of Gasoline Fuel Cell Cars - A Simulation Study," Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 219, 889(2005) https://doi.org/10.1243/095440705X11068
  50. Shiratori, Y., Oshima, T. and Sasaki, K., "Feasibility of Directbiogas SOFC," Int. J. Hydrog. Energy., 33, 6316(2008) https://doi.org/10.1016/j.ijhydene.2008.07.101
  51. Laosiripojana, N. and Assabumrungrat, S., "Catalytic Steam Reforming of Methane, Methanol, and Ethanol over Ni/YSZ: The Possible Use of These Fuels in Internal Reforming SOFC," J. Power. Sources., 163, 943(2007) https://doi.org/10.1016/j.jpowsour.2006.10.006
  52. Clarke, S. H., Dicks, A. L., Pointon, K., Smith, T. A. and Swann, A., "Catalytic Aspects of the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells," Catal. Today 38, 411(1997) https://doi.org/10.1016/S0920-5861(97)00052-7
  53. Vollmar, H. E., Maier, C. U., Nescher, C., Merklein, T. and Poppinger, M., "Innovative Concepts for the Coproduction of Electricity and Syngas with Solid Oxide Fuel Cells," J. Power. Sources., 86, 90(2000) https://doi.org/10.1016/S0378-7753(99)00421-8
  54. Ryu, J.-W., Kang, D.-M., Park, J.-M., Kim, Y.-S., Nam, S.-W., Lee, B.-G., Lee, S.-D. and Moon, D.-J., 'Cogeneration of Both Electricity and Syangas in SOFC System,' The Korea Society for Energy Engineering, 12(3), 67-70(2003)
  55. Moon, D. J., Park, J. M., Kang, J. S., Yoo, K. S. and Hong, S. I., 'Cogeneration of a Synthesis Gas and Electricity Through Internal Reforming of Methane by Carbon Dioxide in a Solid Oxide Fuel Cell System,' J. Ind. Eng. Chem. 12, 149(2006)
  56. Moon, D.-J., Ryu, J.-W., Kang, D.-M., Park, J.-M., Lee, S.-D., Nam, S.-W. and Lee, B.-G., 'Reduction Technology of Carbon Dioxide by Electrocatalytic reaction,' Reduction and Treatment Technology of Carbon Dioxide Workshop(1st), Korea(2003-04)
  57. Ge, Q., Huang, Y., Qiu, F. and Li, S., "Bifunctional Catalysts for Conversion of Synthesis Gas to Dimethyl Ether," Appl. Catal. A: Gen., 167, 23(1998) https://doi.org/10.1016/S0926-860X(97)00290-1
  58. Sault, A. G. and Datye, A. K., "An Auger Electron Spectroscopy Study of the Activation of Iron Fischer-tropsch Catalysts: Ii. Carbon Monoxide Activation," J. Catal., 140, 136(1993) https://doi.org/10.1006/jcat.1993.1073
  59. Moon, D. J. and Ryu, J. W., "Electrocatalytic Reforming of Carbon Dioxide by Methane in SOFC System," Catal. Today 87, 255(2003) https://doi.org/10.1016/j.cattod.2003.10.017
  60. Park, S., Vohs, J. M. and Gorte, R. J., "Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell," Nature 404, 265(2000) https://doi.org/10.1038/35005040
  61. Gorte, R. J., Kim, H. and Vohs, J. M., "Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon," J. Power. Sources., 106, 10(2002) https://doi.org/10.1016/S0378-7753(01)01021-7
  62. Gross, M. D., Vohs, J. M. and Gorte, R. J., "An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ," J. Electrolchem. Soc. 154, B694(2007) https://doi.org/10.1149/1.2736647
  63. Rostrup-Nielsen, J. R. and Christiansen, L. J., "Internal Steam Reforming in Fuel cells and Alkali Poisoning," Appl. Catal. A: Gen., 126, 381(1995) https://doi.org/10.1016/0926-860X(95)00028-3
  64. Meusinger, J., Riensche, E. and Stimming, U., "Reforming of Natural Gas in Solid Oxide Fuel Cell Systems," J. Power. Sources., 71, 315(1998) https://doi.org/10.1016/S0378-7753(97)02763-8
  65. StaNiforth, J. and Ormerod, R. M., "Implications for Using Biogas as a Fuel Source for Solid Oxide Fuel Cells: Internal Dry Reforming in a Small Tubular Solid Oxide Fuel Cell," Catal. Lett., 81, 19(2002) https://doi.org/10.1023/A:1016000519280
  66. Shiratori, Y. and Sasaki, K., "NiO-SCSZ and $Ni_{0.9}Mg_{0.1}$O-SCSZbased Anodes under Internal Dry Reforming of Simulated Biogas Mixtures," J. Power. Sources., 180, 738(2008) https://doi.org/10.1016/j.jpowsour.2008.03.001
  67. Finnerty, C. M., Coe, N. J., Cunningham, R. H. and Ormerod, R. M., "Carbon Formation on and Deactivation of Nickel-based/ Zirconia Anodes in Solid Oxide Fuel Cells running on Methane," Catal. Today 46, 137(1998) https://doi.org/10.1016/S0920-5861(98)00335-6
  68. Lercher, J. A., Bitter, J. H., Hally, W., Niessen, W. and Seshan, K., 'Design of Stable Catalysts for Methane-carbon Dioxide Reforming,' Studies in Surface Science and Catalysis, 463-472 (1996) https://doi.org/10.1016/S0167-2991(96)80257-6
  69. Jung, S., Lu, C., He, H., Ahn, K., Gorte, R. J. and Vohs, J. M., "Influence of Composition and Cu Impregnation Method on the Performance of Cu/$CeO_{2}$/YSZ SOFC Anodes," J. Power. Sources., 154, 42(2006) https://doi.org/10.1016/j.jpowsour.2005.04.018
  70. Gross, M. D., Vohs, J. M. and Gorte, R. J., "Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons," J. Mater. Chem. 17, 3071(2007) https://doi.org/10.1039/b702633a
  71. Shanwen Tao, J. T. S. I., "Discovery and Characterization of Novel Oxide Anodes for Solid Oxide Fuel Cells," The Chemical Record 4, 83(2004) https://doi.org/10.1002/tcr.20003
  72. Marina, O. A., Canfield, N. L. and Stevenson, J. W., "Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-doped Strontium Titanate," Solid State Ionics 149, 21(2002) https://doi.org/10.1016/S0167-2738(02)00140-6
  73. Huang, Y.-H., Dass, R. I., Xing, Z.-L. and Goodenough, J. B., "Double Perovskites as Anode Materials for Solid-Oxide Fuel cells," Science 312, 254(2006) https://doi.org/10.1126/science.1125877
  74. Moon, D.-J., Ryu, J.-W., Kim, T.-Y., Park, J.-M., Kang, D.-M., Lee, B.-G. and Lee, S.-D., "Solid Oxide Fuel Cell(SOFC) for Coproducing Syngas and Electricity by the Internal Reforming of Carbon Dioxide by Hydrocarbons and Electrochemical Membrane Reactor System for Application," Korea Patent 10-2005- 0039465
  75. Goula, G., Kiousis, V., Nalbandian, L. and Yentekakis, I. V., "Catalytic and ElectroCatalytic Behavior of Ni-based Cermet Anodes under Internal Dry Reforming of $CH_{4}+CO_{2}$ Mixtures in SOFCs," Solid State IoNics 177, 2119(2006) https://doi.org/10.1016/j.ssi.2006.03.040
  76. Janardhanan, V. M., Heuveline, V. and Deutschmann, O., "Performance Analysis of a SOFC under Direct Internal Reforming Conditions," J. Power. Sources., 172, 296(2007) https://doi.org/10.1016/j.jpowsour.2007.07.008
  77. Klein, J. M., Bultel, Y., Georges, S. and Pons, M., "Modeling of a SOFC Fuelled by Methane: From Direct Internal Reforming to Gradual Internal Reforming," Chem. Eng. Sci., 62, 1636(2007) https://doi.org/10.1016/j.ces.2006.11.034
  78. Moon, D.-J., Kang, J.-S., Kim, M.-H., Nho, W.-S, Kim, D.-H. and Lee, B.-G., "Ni-based Catalyst for Tri-reforming of Methane and Its Catalysis Application for the Production of Syngas," Korea Patent 10-2007-0043304
  79. Van Herle, J., Larrain, D., Autissier, N., Wuillemin, Z., Molinelli, M. and Favrat, D., "Modeling and Experimental Validation of Solid Oxide Fuel Cell Materials and Stacks," Elsevier Sci Ltd, 2627-2632(2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.225
  80. Koh, J.-H., Yoo, Y.-S., Park, J.-W. and Lim, H. C., "Carbon Deposition and Cell Performance of Ni-YSZ Anode Supported SOFC with Methane Fuel," Solid State IoNics 149, 157(2002) https://doi.org/10.1016/S0167-2738(02)00243-6
  81. Trembly, J. P., Marquez, A. I., Ohrn, T. R. and Bayless, D. J., "Effects of Coal Syngas and H2S on the Performance of Solid Oxide Fuel Cells: Single-cell Tests," J. Power. Sources., 158, 263 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.055
  82. Zhi, M., Chen, X., Finklea, H., Celik, I. and Wu, N. Q., "Electrochemical and Microstructural Analysis of Nickel-Yttria-Stabilized Zirconia Electrode Operated in Phosphorus-containing Syngas," J. Power. Sources., 183, 485(2008) https://doi.org/10.1016/j.jpowsour.2008.05.055
  83. Newsome, D. S., "The Water-Gas Shift Reaction," Catal. Revi., 21,275(1980) https://doi.org/10.1080/03602458008067535
  84. Davis, B. H., "Fischer-tropsch Synthesis: Relationship Between Iron Catalyst Composition and Process Variables," Catal. Today 84, 83(2003) https://doi.org/10.1016/S0920-5861(03)00304-3
  85. Liu, Y., Zhang, C. H., Wang, Y., Li, Y., Hao, X., Bai, L., Xiang, H. W., Xu, Y. Y., Zhong, B. and Li, Y. W., "Effect of Co-feeding Carbon Dioxide on Fischer-tropsch Synthesis over an Iron-Manganese Catalyst in a Spinning Basket Reactor," Fuel Process. Technol. 89, 234(2008) https://doi.org/10.1016/j.fuproc.2007.11.002
  86. Kim, S.-M., Bae, J. W., Lee, Y.-J. and Jun, K.-W., "Effect of $CO_{2} in the Feed Stream on the Deactivation of Co/$\gamma$-Al2O3 Fischer- tropsch Catalyst," Catal. Commu., 9, 2269(2008) https://doi.org/10.1016/j.catcom.2008.05.016
  87. Fiato, R. A., Iglesia, E., Rice, G. W., Soled, S. L., T. Inui, M. A. K. I. S. Y. and Yamaguchi, T., 'Iron Catalyzed $CO_{2}$ Hydrogenation to Liquid Hydrocarbons,' Stud. Surf. Sci. Catal., Elsevier, 339- 344(1998) https://doi.org/10.1016/S0167-2991(98)80767-2
  88. Jin, Y. and Datye, A. K., "Phase Transformations in iron Fischertropsch Catalysts During Temperature-programmed Reduction," J. Catal., 196, 8(2000) https://doi.org/10.1006/jcat.2000.3024
  89. Sai Prasad, P., Bae, J., Jun, K.-W. and Lee, K.-W., "Fischer-tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-based Catalysts," Catal. Surv. Asia., 12, 170(2008) https://doi.org/10.1007/s10563-008-9049-1
  90. Hwang, J. S., Jun, K.-W. and Lee, K.-W., "Deactivation and Regeneration of Fe-K/alumina Catalyst in $CO_{2}$ Hydrogenation," Appl. Catal. A: Gen., 208, 217(2001) https://doi.org/10.1016/S0926-860X(00)00701-8
  91. Choi, P. H., Jun, K.-W., Lee, S.-J., Choi, M.-J. and Lee, K.-W., “"Hydrogenation of Carbon Dioxide over Alumina Supported Fe- K Catalysts,”" Catal. Lett., 40, 115(1996) https://doi.org/10.1007/BF00807467
  92. Van Steen, E. and Claeys, M., "Fischer-tropsch Catalysts for the Biomass-to Liquid Process," Chem. Eng. Technol. 31, 655(2008) https://doi.org/10.1002/ceat.200800067
  93. Dictor, R. A. and Bell, A. T., "Fischer-tropsch Synthesis over Reduced and Unreduced Iron Oxide Catalysts," J. Catal.; Vol/Issue: 97:1, Pages: 121(1986) https://doi.org/10.1016/0021-9517(86)90043-6
  94. Bukur, D. B., Mukesh, D. and Patel, S. A., "Promoter Effects on Precipitated Iron Catalysts for Fischer-tropsch Synthesis," Industrial & Engineering Chemistry Research 29, 194(1990) https://doi.org/10.1021/ie00098a008
  95. Luo, M. and Davis, B. H., "Fischer-tropsch Synthesis: Group Alkali-earth Metal Promoted Catalysts," Appl. Catal. A: Gen., 246, 171(2003) https://doi.org/10.1016/S0926-860X(03)00024-3
  96. Hayakawa, H., Tanaka, H. and Fujimoto, K., "Studies on Catalytic Performance of Precipitated Iron/Silica Catalysts for Fischer- tropsch Synthesis," Appl. Catal. A: Gen., 328, 117 (2007) https://doi.org/10.1016/j.apcata.2007.05.035
  97. Peez-Alonso, F. J., Ojeda, M., Herranz, T., Rojas, S., Gonzeez- Carballo, J. M., Terreros, P. and Fierro, J. L. G., "Carbon Dioxide Hydrogenation over Fe-Ce Catalysts," Catal. Commun., 9, 1945(2008) https://doi.org/10.1016/j.catcom.2008.03.024
  98. ArcoumaNis, C., Bae, C., Crookes, R. and Kinoshita, E., "The Potential of Dimethyl Ether (DME) as an Alternative Fuel for Compression-ignition Engines: A Review," Fuel 87, 1014(2008) https://doi.org/10.1016/j.fuel.2007.06.007
  99. Semelsberger, T. A., Borup, R. L. and Greene, H. L., "Dimethyl Ether (DME) as an Alternative Fuel," J. Power. Sources., 156, 497(2006) https://doi.org/10.1016/j.jpowsour.2005.05.082
  100. Good, D. A., Francisco, J. S., Jain, A. K. and Wuebbles, D. J., 'Lifetimes and Global Warming Potentials for Dimethyl Ether and for Fluorinated Ethers: $CH_{3}OCF_{3}$ (E143a), $CHF_{2}OCHF_{2}$ (E134), $CHF_{2}OCF_{3}$ (E125),' J. Geophys. Res. 103 https://doi.org/10.1029/98JD01880
  101. http://www.gasnews.com/news/main.php
  102. Kung, H. H., "Methanol Synthesis, " Catal. Rev., 22, 235(1980) https://doi.org/10.1080/03602458008066535
  103. Spivey, J. J., "Review: Dehydration Catalysts for the Methanol/ Dimethyl Ether Reaction," Chemical Engineering CommuNications 110, 123(1991) https://doi.org/10.1080/00986449108939946
  104. Yaripour, F., Baghaei, F., Schmidt, I. and Perregaard, J., "Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-acid Catalysts," Catal. Commu., 6, 147(2005) https://doi.org/10.1016/j.catcom.2004.11.012
  105. Guisnet, M. and Magnoux, P., "Deactivation by Coking of Zeolite Catalysts. Prevention of Deactivation. Optimal Conditions for Regeneration," Catal. Today 36, 477(1997) https://doi.org/10.1016/S0920-5861(96)00238-6
  106. Raoof, F., Taghizadeh, M., Eliassi, A. and Yaripour, F., "Effects of Temperature and Feed Composition on Catalytic Dehydration of Methanol to Dimethyl Ether over $\gamma$-Alumina," Fuel 87, 2967(2008) https://doi.org/10.1016/j.fuel.2008.03.025
  107. Vishwanathan, V., Jun, K.-W., Kim, J.-W. and Roh, H.-S., "Vapour Phase Dehydration of Crude Methanol to Dimethyl Ether over Na-modified H-ZSM-5 Catalysts," Appl. Catal. A: Gen., 276, 251 (2004) https://doi.org/10.1016/j.apcata.2004.08.011
  108. Shikada, T., Ohno, Y., Ogawa, T., Ono, M., Mizuguchi, M., Tomura, K. and Fujimoto, K., "Direct Synthesis of Dimethyl Ether Form Synthesis Gas," Parmaliana, A.S.D.F.F.V.A.A.F., ed., Elsevier Science Publ B V, 515-520(1998)
  109. Kim, J.-H., Park, M. J., Kim, S. J., Joo, O.-S. and Jung, K.-D., "DME Synthesis from Synthesis Gas on the Admixed Catalysts of Cu/ZnO/Al2O3 and ZSM-5," Appl. Catal. A: Gen., 264, 37(2004) https://doi.org/10.1016/j.apcata.2003.12.058
  110. Qi, G.-X., Fei, J.-H., Zheng, X.-M. and Hou, Z.-Y., "DME Synthesis from Carbon Dioxide and Hydrogen over Cu-Mo/HZSM- 5," Catal. Lett., 72, 121 (2001) https://doi.org/10.1023/A:1009049513834
  111. Luan, Y., Xu, H., Yu, C., Li, W. and Hou, S., "Effects and Control of Steam in the Systems of Methanol and DME Synthesis from Syngas over Cu-based Catalysts," Catal. Lett., 125, 271 (2008) https://doi.org/10.1007/s10562-008-9529-y
  112. Wang, T. F., Wang, J. F. and Jin, Y., "Slurry Reactors for Gasto- liquid Processes: A Review," Ind. Eng. Chem. Res., 46, 5824 (2007) https://doi.org/10.1021/ie070330t
  113. Ogawa, T., Inoue, N., Shikada, T., Inokoshi, O. and Ohno, Y., 'Direct Dimethyl Ether (DME) Synthesis from Natural Gas,' Bao, X.X.Y., ed., Elsevier Science Bv, 379-384(2004) https://doi.org/10.1016/S0167-2991(04)80081-8
  114. Sun, K., Lu, W., Qiu, F., Liu, S. and Xu, X., "Direct Synthesis of DME over Bifunctional Catalyst: Surface Properties and Catalytic Performance," Appl. Catal. A: Gen., 252, 243(2003) https://doi.org/10.1016/S0926-860X(03)00466-6
  115. Barbosa, F., Ruiz, V., Monteiro, J., de Avillez, R., Borges, L. and Appel, L., "The Deactivation Modes of Cu/ZnO/$AL_{2}O_{3}$ and HZSM-5 Physical Mixture in the One-step DME Synthesis," Catal. Lett., 126, 173(2008) https://doi.org/10.1007/s10562-008-9601-7
  116. Luan, Y., Xu, H., Yu, C., Li, W. and Hou, S., "In-situ Regeneration Mechanisms of Hybrid Catalysts in the One-step Synthesis of Dimethyl Ether from Syngas," Catal. Lett., 115, 23(2007) https://doi.org/10.1007/s10562-007-9066-0
  117. Wang, L., Qi, Y., Wei, Y., Fang, D., Meng, S. and Liu, Z., "Research on the Acidity of the Double-function Catalyst for DME Synthesis from Syngas," Catal. Lett., 106, 61(2006) https://doi.org/10.1007/s10562-005-9191-6
  118. Yoo, K. S., Kim, J.-H., Park, M.-J., Kim, S.-J., Joo, O.-S. and Jung, K.-D., "Influence of Solid Acid Catalyst on DME Production Directly from Synthesis Gas over the Admixed Catalyst of Cu/ZnO/Al2O3 and Various SAPO Catalysts," Appl. Catal. A: Gen., 330, 57(2007) https://doi.org/10.1016/j.apcata.2007.07.007
  119. Moradi, G., Ahmadpour, J. and Yaripour, F., "Systematic Investigation of the Effects of Operating Conditions on the Liquid- Phase Dimethyl Ether (LPDME) Process," Energy & Fuels 22, 3587(2008) https://doi.org/10.1021/ef8004338
  120. Xu, A., Indala, S., Hertwig, T. A., Pike, R. W., Knopf, F. C., Yaws, C. L. and Hopper, J. R., "Development and Integration of New Processes Consuming Carbon Dioxide in Multi-Plant Chemical Production Complexes, " Clean Technologies and Environmental Policy 7, 97(2005) https://doi.org/10.1007/s10098-004-0270-y