Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model

3차원 ELCOM 모형을 이용한 대청호 수온성층 모의

  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Heung Soo (Department of Environmental Engineering, Chungbuk National University) ;
  • Choi, Jung Kyu (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, In Gu (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2009.08.04
  • Accepted : 2009.09.17
  • Published : 2009.11.30

Abstract

The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. 김범철(1996). 우리나라 호소수질환경의 개선방향. 한국수자원학회논문집, 29(5), pp. 64-68
  2. 김범철, 박주현, 허우명, 임병진, 황길순, 최광순, 최종수(2001).국내 주요 호수의 육수학적 조사(4): 주암호. Korean J.Limnol., 34(1), pp. 30-44
  3. 김윤희, 김범철, 최광순, 서동일(2001). 2차원 수리수질모델을 이용한 소양호 수온성층현상과 홍수기 밀도류 이동현상의 모델링. 상하수도학회지, 15(1), pp. 40-49
  4. 나은혜, 박석순(2005). 팔당호 수온, 유속, 체류시간의 시・공간적 분포 및 유입지류 흐름에 관한 3차원 모델 연구.대한환경공학회지, 27(9), pp. 978-988
  5. 서동일(1998). 대청호의 성층현상에 의한 부영양화 특성과 수질관리 방안에 관한 연구. 대한환경공학회지, 20(9),pp. 1219-1234
  6. 서동일, 이정우(2005). 3차원 수리 모델 EFDC(Environmental Fluid Dynamics Code)를 이용한 준설에 의한 부유사 확산영향에 관한 연구. 공동춘계학술발표회 논문집, 한국물환경학회・대한상하수도학회, pp. 360-363
  7. 윤성완, 정세웅, 최정규(2008). 홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화. 한국수자원학회논문집, 41(12),pp. 1219-1230 https://doi.org/10.3741/JKWRA.2008.41.12.1219
  8. 이상욱, 김정곤, 노준우, 고익환(2007). CE-QUAL-W2 모델을 이용한 임하호 선택배제시설의 효과분석. 수질보전 한국물환경학회지, 23(2), pp. 228-235
  9. 정세웅(2004). 성층화된 저수지로 유입하는 탁류의 공간분포 특성 및 연직 2차원 모델링. 대한환경공학회지, 26(9),pp. 970-978
  10. 정세웅, 박재호, 김유경, 윤성완(2007). 대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용. 수질보전 한국물환경학회지, 23(1), pp. 52-63
  11. 정세웅, 오정국(2006). 대청호 상류 하천에서 강우시 하천수온 변동 특성 및 예측 모형 개발. 한국수자원학회논문집, 39(1), pp. 79-88 https://doi.org/10.3741/JKWRA.2006.39.1.079
  12. 천세억, 이재안, 이재정, 유영복, 방규철, 이열재(2006). 대청호 유입유량 변동과 수질 및 조류증식의 관계. 수질보전한국물환경학회지, 22(2), pp. 342-348
  13. Ahlfeld, D., Joaguin, A., Tobiason, J., and Mas, D. (2003).Case Study: Impact of Reservoir Stratification on Interflow Travel Time. Journal of Hydraulic Engineering, ASCE,129(12), pp. 966-975 https://doi.org/10.1061/(ASCE)0733-9429(2003)129:12(966)
  14. Anohin, V. V., Imberger, J., Romero, J. R., and Ivey, G. N.(2006). Effect of Long Internal Waves on the Quality of Water Withdrawn from a Stratified Reservoir. J. Hydr.Eng., 132(11), pp. 1134-1145 https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1134)
  15. Botelho, D. A. and Imberger, J. (2007). Dissolved-oxygen response to wind-inflow interactions in a stratified reservoir.Limnol. Oceanogr., 52, pp. 2027-2052 https://doi.org/10.4319/lo.2007.52.5.2027
  16. Casulli, V. and Cheng, R. T. (1992). Semi-implicit finite difference methods for three dimensional shallow water flow. International Journal of Numerical Methods Fluids, 15, pp.629-648 https://doi.org/10.1002/fld.1650150602
  17. Ford, D. E. and Johnson, L. S. (1986). An assessment of reservoir mixing processes. Technical Report E-86-7, U.S. Army Engineers Waterways Experiment Station, Vicksburg,MS
  18. Gu, R. and Chung, S. W. (1998). Reservoir flow sensitivity to inflow and ambient parameters. Journal of Water Resources Planning and Management, 124(3), pp. 119-128 https://doi.org/10.1061/(ASCE)0733-9496(1998)124:3(119)
  19. Hodges, B. R. and Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM. Users Guide, Centre for Water Research, University of Western Australia technical Publication
  20. Imberger, J. and Hamblin, B. (1982). Dynamics of lakes, reservoirs, and cooling ponds. Ann. Rev. Fluid Mech., 14,pp. 153-187 https://doi.org/10.1146/annurev.fl.14.010182.001101
  21. Imberger, J. and Patterson, J. C. (1990). Physical Limnology.In Wu, T. (ed.), Advances in Applied Mechanics, 27, pp.302-475
  22. Leonard, B. P. (1991). The ultimate conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering,88, pp. 17-74 https://doi.org/10.1016/0045-7825(91)90232-U
  23. Martin, J. L. and McCutcheon, S. C. (1999). Hydrodynamics and Transport for Water Quality Modeling. CRC Press, Inc
  24. Okely, P. and Imberger, J. (2007). Horizontal transport induced by upwelling in a canyon-shaped reservoir. Hydrobiologia,586, pp. 343-355 https://doi.org/10.1007/s10750-007-0706-6
  25. Reynolds, C. S., Oliver, R. L., and Walsby, A. E. (1987).Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research, 21, pp. 379-390 https://doi.org/10.1080/00288330.1987.9516234
  26. Spigel, R. H. and Imberger, J. (1980). The classification of Mixed-Layer Dynamics of Lakes of Small to Medium Size. J. Phys. Oceanogr., 10, pp. 1104-1121 https://doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2
  27. Spigel, R. H. and Imberger, J. (1987). Mixing processes relevant to phytoplankton dynamics in lakes. New Zealand Journal of Marine and Freshwater Research, 21, pp. 361-377 https://doi.org/10.1080/00288330.1987.9516233
  28. Stevens, C., Lawrence G., Hamblin P., and Carmack, E.(1996). Wind forcing of internal waves in a long narrow stratified lake. Dynamics of Atmospheres and Oceans, 24,pp. 41-50 https://doi.org/10.1016/0377-0265(95)00409-2
  29. Wetzel, R. G. (1983). Limnology. Saunders College Publishing,Philadelphia, PA