Effects of Operating Variables on Solid Separation Rate in Two-interconnected Fluidized Beds System for Selective Solid Circulation

선택적 고체순환을 위한 2탑 유동층 시스템에서 고체분리속도에 미치는 조업변수들의 영향

  • Ryu, Ho-Jung (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jin, Gyoung-Tae (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Bae, Dal-Hee (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Kim, Hong-Ki (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 진경태 (한국에너지기술연구원 온실가스연구단) ;
  • 배달희 (한국에너지기술연구원 온실가스연구단) ;
  • 김홍기 (한국에너지기술연구원 온실가스연구단)
  • Received : 2009.03.09
  • Accepted : 2009.03.26
  • Published : 2009.06.30

Abstract

Effects of operating variables on solid separation rate in two-interconnected fluidized beds system for selective solid circulation have been investigated. Coarse(212~300 or $425{\sim}600{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 987 g/min. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, diameter of solid injection nozzle, particle size of coarse particles, aperture of the solid separator, and weight fraction of fines in the solid mixture increased. However, the effect of the fluidization velocity was negligible.

선택적 고체순환을 위한 2탑 유동층 공정에서 고체분리기에 의한 고체분리속도에 미치는 조업변수들의 영향을 측정 및 고찰하였다. 본 연구에서 개발한 고체분리기를 이용하여 굵은입자(212~300 또는 $425{\sim}600{\mu}m$)와 고운입자($63{\sim}106{\mu}m$)의 분리가 가능하였으며 고체분리속도는 66~987 g/min의 범위를 나타내었다. 고체분리속도는 고체분사노즐의 유속, 고체층 높이, 고체분사노즐의 직경, 고운입자와 굵은입자의 입자크기 차이, 고체분리기 금속망 간극크기 및 혼합입자 중 고운입자의 무게분율이 증가함에 따라 증가하였으며 유동화 속도의 영향은 크지 않았다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Ryu, H. J., 'Process Design and Selection of Operating Conditions for SMART System,' Trans. of the Korean Hydrogen and New Energy Society, 18(1), 1-11(2007)
  2. Ryu, H. J., 'Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation,' Trans. of the Korean Hydrogen and New Energy Society, 18(4), 382-390(2007)
  3. Ryu, H. J., Yi, C. K., Shun, D. and Jin, G. T., 'Conceptual Design and Performance Estimation of SEWGS Process for Precombustion $CO_2$ Capture,' Theories and Applications of Chem. Eng., KIChE, 14(2), 294(2008)
  4. Cobden, P. D., van Beurden P., Reijers, H. Th. J., Elzinga, G. D., Kluiters, S. C. A., Dijkstra, J. W., Jansen, D. and van den Brink, R. W., "Soprtion Enhanced Hydrogen Production for Pre-combustion $CO_2$ Capture: Thermodynamics Analysis and Experimental Results," Int. J. of Greenhouse Gas Control, 1, 170-179(2007) https://doi.org/10.1016/S1750-5836(07)00021-7
  5. Lee, K. B., Verdooren, A., Caram, H. S. and Sircar, S., "Chemisorption of Carbon Dioxide on Potassium-carbonate-promted Hydrotalcite," J. of Colloid and Interface Science, 308, 30-39(2007) https://doi.org/10.1016/j.jcis.2006.11.011
  6. Ryu, H. J., Park, Y. C., Lee, S. Y. and Kim, H. K., 'Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System,' Korean Chem. Eng. Res., 47(2), 195-202(2009)
  7. Ryu, H. J., Park, Y. C., Jo, S. H. and Park, M. H., "Development of Novel Two-Interconnected Fluidized Bed System," Korean Journal of Chemical Engineering, 25(5), 1178-1183(2008) https://doi.org/10.1007/s11814-008-0194-z
  8. Ryu, H. J., Park, J., Kim, H. K. and Park, M. H., 'Solid Circulation Characteristics in a 3 kW Chemical-looping Combustor,' Korean Chem. Eng. Res., 46(6), 1057-1062(2008)
  9. Ryu, H. J., Jang, M. S., Kim, H. K. and Lee, D. K., 'Development of Two-interconnected Fluidized Beds System for Selective Solid Circulation,' Korean Chem. Eng. Res., 47(2), 195-202(2009)