DOI QR코드

DOI QR Code

Capacitively Coupled Dry Etching of GaAs in BCl3/N2 Discharges at Low Vacuum Pressure

저진공 축전 결합형 BCl3/N2 플라즈마를 이용한 GaAs의 건식 식각

  • Kim, Jae-Kwon (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Park, Ju-Hong (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Lee, Sung-Hyun (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Noh, Ho-Seob (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Joo, Young-Woo (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Park, Yeon-Hyun (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Kim, Tae-Jin (School of Nano Engineering, Center for nano technology applications, Inje University) ;
  • Lee, Je-Won (School of Nano Engineering, Center for nano technology applications, Inje University)
  • 김재권 (인제대학교 나노공학부/나노기술연구소) ;
  • 박주홍 (인제대학교 나노공학부/나노기술연구소) ;
  • 이성현 (인제대학교 나노공학부/나노기술연구소) ;
  • 노호섭 (인제대학교 나노공학부/나노기술연구소) ;
  • 주영우 (인제대학교 나노공학부/나노기술연구소) ;
  • 박연현 (인제대학교 나노공학부/나노기술연구소) ;
  • 김태진 (인제대학교 나노공학부/나노기술연구소) ;
  • 이제원 (인제대학교 나노공학부/나노기술연구소)
  • Published : 2009.03.27

Abstract

This study investigates GaAs dry etching in capacitively coupled $BCl_3/N_2$ plasma at a low vacuum pressure (>100 mTorr). The applied etch process parameters were a RIE chuck power ranging from $100{\sim}200W$ on the electrodes and a $N_2$ composition ranging from $0{\sim}100%$ in $BCl_3/N_2$ plasma mixtures. After the etch process, the etch rates, RMS roughness and etch selectivity of the GaAs over a photoresist was investigated. Surface profilometry and field emission-scanning electron microscopy were used to analyze the etch characteristics of the GaAs substrate. It was found that the highest etch rate of GaAs was $0.4{\mu}m/min$ at a 20 % $N_2$ composition in $BCl_3/N_2$ (i.e., 16 sccm $BCl_3/4$ sccm $N_2$). It was also noted that the etch rate of GaAs was $0.22{\mu}m/min$ at 20 sccm $BCl_3$ (100 % $BCl_3$). Therefore, there was a clear catalytic effect of $N_2$ during the $BCl_3/N_2$ plasma etching process. The RMS roughness of GaAs after etching was very low (${\sim}3nm$) when the percentage of $N_2$ was 20 %. However, the surface roughness became rougher with higher percentages of $N_2$.

Keywords

References

  1. J. Hong, E. S. Lamber, C. R. Abernathy, S. J. Pearton, R. J. Shul and W. S. Hobson, J. Electron. Mater., 27, 132 (1998) https://doi.org/10.1007/s11664-998-0203-3
  2. L. Jalabert, P. Dubreuil, F. Carcenac, S. Pin, L. Salvagnac, H. Grainer and C. Fontaine, Microelectron. Eng., 85, 1173 (2008) https://doi.org/10.1016/j.mee.2008.01.063
  3. Y. B. Hahn, D. C. Hayes, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton and R. J. Shul, Appl. Surf. Sci., 147, 207 (1999) https://doi.org/10.1016/S0169-4332(99)00114-2
  4. R. J. Shul, G. B. McClellan, R. D. Briggs, S. J. Pearton, C. R. Abernathy, J. W. Lee, C. Constantine and C. Barratt, J. Vac. Sci. Technol., A15, 633 (1997) https://doi.org/10.1116/1.580696
  5. S. Thomas, K. K. Ko and S. W. Pang, J. Vac. Sci. Technol., A13, 894 (1995) https://doi.org/10.1116/1.579848
  6. D. C. Hays, H. Cho, K. B. Jung, Y. B. Hahn, C. R. Abernathy, S. J. Pearton, F. Ren and W. S. Hobson, Appl. Surf. Sci., 147, 125 (1999) https://doi.org/10.1016/S0169-4332(99)00103-8
  7. I. K. Baek, W. T. Lim, J. W. Lee, M. H. Jeon and G. S. Cho, S. J. Pearton J. Vac. Sci. Technol., B21, 2487 (2003) https://doi.org/10.1116/1.1615984
  8. J. W. Lee, M. H. Jeon, M. Devre, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S. J. Pearton, F. Ren and R. J. Shul, Solid-state Electron., 45, 1683 (2001) https://doi.org/10.1016/S0038-1101(01)00162-9
  9. S. H. Yang and P. R. Bandaru., Mater. Sci. Eng., B143, 27 (2007) https://doi.org/10.1016/j.mseb.2007.07.104
  10. C. C. Wang, Y. L. Lin, S. K. Lin, C. S. Li, H. K. Huang, C. L. Wu and C. S. Chang, J. Vac. Sci. Technol. B25, 312 (2007) https://doi.org/10.1116/1.2437157
  11. M. A. Libermann and A. J. Lichtenberg, Principles of Plasma Discharges & Materials Processing, p.604, John Wiley &Sons, New Jersey, USA (2005)
  12. M. Sugawara, Plasma Etching, p.180, Oxford University Press, NY, USA (1998)
  13. R. J. Shul and S. J. Pearton, Handbook of Advanced Plasma Processing Techniques, p.459, Springer, NY, USA (2000)
  14. O. A. Popov, High Density Plasma Sources, p.100, Noyes Publications, NJ, USA (1995)