DOI QR코드

DOI QR Code

Fatigue Life Optimization of Spot Welding Nuggets Considering Vibration Mode of Vehicle Subframe

서브프레임의 진동모드를 고려한 점용접 너깃의 피로수명 최적설계

  • Published : 2009.10.31

Abstract

In this paper, welding pitch optimization technique of vehicle subframe is presented considering the fatigue life of spot welding nuggets. Fatigue life of spot welding nuggets is estimated by using the frequency-domain fatigue analysis technique. The input data, which are used in the fatigue analysis, are obtained by performing the dynamic analysis of vehicle model passing through the Belgian road profile and also the modal frequency response analysis of finite element model of vehicle subframe. According to the fatigue life result obtained from the frequency-domain fatigue analysis, the design points to optimize the weld pitch distance are determined. For obtaining the welding pitch combination to maximize the fatigue life of the spot welding nuggets, 4-factor, 3-level orthogonal array experimental design is used. This study shows that the optimized subframe improves the fatigue life of welding nugget with minimum fatigue life about 65.8 % as compared with the baseline design.

본 논문에서는 점용접 너깃의 피로수명을 고려한 차량 서브프레임의 용접간격 최적화 설계기법이 제안된다. 주파수영역 피로해석기법에 의해 점용접 너깃의 피로수명이 평가된다. 피로해석에서 사용되는 입력 데이터는 벨지안로 프로파일을 통과하는 차량동역학 해석과 차량 서브프레임 유한요소모델의 모드 주파수 해석을 통해 얻는다. 주파수 영역 피로해석으로 부터 얻은 피로수명 결과로부터 용접간격 최적화를 수행 할 설계점들이 선정된다. 점용접 너깃의 피로수명을 최대화시키는 용접간격을 얻기 위하여 4-요인, 3-수준 직교배열 실험계획법이 사용된다. 본 연구를 통하여 최적화된 서브프레임은 초기모델에 비하여 최소 피로수명을 갖는 용접 너깃의 피로수명이 약 65.8 % 증대되는 것을 알 수 있다.

Keywords

References

  1. J. S. Majcher, R. D. Michaleson, and A. R. Solomon, "Analysis of vehicle suspensions with static and dynamic computer simulations", SAE Paper, no. 76183, 1976
  2. R. W. Landgrat and F. A. Conle, "Vehicle durability analysis", in Concurrent Engineering of Mechanical Systems, The University of Iowa, vol. 1, pp. 239-259, 1989
  3. G. S. Choi, H. K. Min, and S. H. Paik, "Dynamic stress of vehicle using virtual proving ground approach", SAE Paper, no. 2000-01-0121, pp. 1-7, 2000
  4. W. Steiner, G. Stinwender, and B. Unger, "Fatigue simulation of power train components during the design process", International Journal of Automotive Technology, vol. 2, no. 1, pp. 9-16, 2001
  5. P. Heyes, “A spot-weld fatigue analysis module in the MSC/Fatigue environment”, MSC 3rd French Users' Conference Proceedings, 1996
  6. S. B. Lee and H. J. Yim, “Fatigue analysis of vehicle chassis component considering resonance frequency”, Transactions of the Korean Society of Machine Tool Engineers, vol. 13, no. 6, pp. 94-101, 2004
  7. S. B. Lee, S. H. Jeon, and H. J. Yim, “Optimum design of welding pitch considering fatigue life of spot welding nuggets”, Transactions of Korean Society of Automotive Engineers, vol. 16, no. 4, pp. 179-185, 2008
  8. A. R. Henderson, “Frequency domain fatigue damage esti-mation method suitable for deterministic load spectra”, British Wind Energy Conference, vol. 21, pp.1-3, 1999
  9. S. B. Lee, W. S. Han, and H. J. Yim, “A study on resonance durability analysis of vehicle suspension system”, Journal of Acoustical Society of Korea, vol. 22, no. 6, pp.512-518, 2003
  10. H. J. Yim, E. J. Haug, and B. Dopker, “Methods for accurate stress-time history computation”, in Concurrent Engineering of Mechanical Systems, The University of Iowa, vol. 2, pp. 117-134, 1990
  11. E. Y. Kuo and S. G. Kelkar, “Vehicle body structural durability anaIysis”, SAE Paper, no. 951096, pp. 135-150, 1995
  12. MSC.NASTRAN, MSC/NASTRAN User's Guide, MSC Software Co., Los Angles, CA., 2001
  13. MSC.NASTRAN, MSC/Fatigue Quick Start Guide, MSC Software Co., Los Angeles, CA., 1999
  14. S. H. Park, Modern Design of Experiments, Min Young Sa, Seoul, 2002