Design of a Compact Narrow Band Pass Filter Using the Circular CSRR

원형 CSRR를 이용한 소형 협 대역통과 필터 설계

  • 최동묵 (경북대학교 전자전기컴퓨터학부) ;
  • 김당오 (경북대학교 전자전기컴퓨터학부) ;
  • 김채영 (경북대학교 전자전기컴퓨터학부)
  • Published : 2009.11.30

Abstract

In this paper, a design method of the compact narrow band filter on the microstrip board is proposed using complementary split-ring resonators(CSRRs). The design technique of this filter is based on cascading filter stages consisting of the combination of circular CSRRs, capacitive gaps between patches, and inductive grounded stubs with the meander configuration. By these means, it was possible to get the nearly symmetric frequency responses, adjustable bandwidths, compact sizes. And also excellent characteristic of the out-of-band rejection is achieved in contrast to the conventional filter design technique. The measured insertion shows good results about -4.0dB at the center frequency($f_0=1GHz$) and passband return loss is less than -9.4dB. The 3dB fractional bandwidth(FBW) is approximately 4%. The results of the frequency response measured on the fabricated band pass filter substrate show satisfactory agreement with the simulated frequency responses by the HFSS in the region of interest.

본 논문에서는 원형 Complementary split-ring resonator(CSRR)를 이용하여 마이크로스트립 기판상에 구현될 소형 협 대역통과 필터설계기법을 제안한다. 이 필터의 설계기법은 원형 CSRR, 패치사이의 용량성 갭, 그리고 미앤드 구조를 가진 유도성 스터브의 조합으로 구성된 필터 단들의 종속 연결에 근거를 두고 있다. 그 기법하에서 거의 대칭인 필터응답, 가변 대역폭, 그리고 소형필터를 구현할 수 있었다. 제안된 필터는 기존의 필터보다 저지대역에서 우수한 차단특성을 가졌다. 측정결과, 삽입손실은 중심주파수($f_0=1GHz$)에서 -4.0dB, 통과대역에서 -9.4dB 이하, 3dB 대역폭은 약 4%로 나타났다. 제작된 필터의 관심 영역 주파수응답은 HFSS로 전산모의 실험된 값과 잘 일치되었다.

Keywords

References

  1. A. E. Atia, A. E. Williams, 'A Solution for narrow-band coupled cavities,' COMSAT Laboratories Tech. Memo. CL-39-70, Sept. 22,1970
  2. A. E. Atia, A. E. Williams, 'Narrow band- pass waveguide filters,' IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 258-265, Apr.1972 https://doi.org/10.1109/TMTT.1972.1127732
  3. A. E. Atia, A. E. Williams, R. W. Newcomb,'Narrow-band multiple-coupled cavities synthesis,' IEEE Trans. Circuits Systems, vol.CAS-21, pp. 649-655, Sept. 1974 https://doi.org/10.1109/TCS.1974.1083913
  4. R. J. Cameron, J. D. Rhodes, 'Asymmetric realizations for dual-mode bandpass filters,' IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp.51-58, Jan. 1981 https://doi.org/10.1109/TMTT.1981.1130286
  5. C. F. Chen, T. Y. Huang, and R. B. Wu, 'Novel compact net-type resonators and their applications to microstrip bandpass filters,' IEEE Trans. Microwave Theory Tech., Vol.54, No.2, pp.755-762, Feb. 2006 https://doi.org/10.1109/TMTT.2005.862626
  6. S. C. Lin, P. H. Deng, Y. S. Lin, C. H. Wang and C. H. Chen, 'Wide-stopband microstrip bandpass filters using dissimilar quarterwavelength stepped-impedance resonators,' IEEE Trans. Microwave Theory Tech., vol. 54, no. 3, pp. 1011-1018, Mar. 2006 https://doi.org/10.1109/TMTT.2005.864139
  7. F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin and M. Sorolla, 'Effective negative-$\varepsilon$ stopband microstrip lines based on complementary split ring resonators,' IEEE Microwave and Wireless Components Letters, vol. 14, no. 6, pp. 280-282, June 2004 https://doi.org/10.1109/LMWC.2004.828029
  8. J. Bonache, I. Gil, F. Martin, I. Gil, J. Garcia-Garcia, R. Marques and M. Sorolla, 'Microstrip bandpass filters with wide bandwidth and compact dimensions,' Microwave and Optical Technology Letters, vol. 46, no. 4, pp. 343-346, Aug. 2005 https://doi.org/10.1002/mop.20982
  9. M. Gil, J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, 'On the transmission properties of left-handed microstrip lines implemented by complementary split rings resonators,' Int. J.Numerical Modelling, vol. 19, pp. 87-103, Mar.2006 https://doi.org/10.1002/jnm.601
  10. J. S. Hong, M. J. Lancaster, Microwave Filter for RF/Microwave Applications, New York :John Wiley & Sons, pp. 56-61, 2001
  11. J. D. Baena, J. Bonache, F. Martin, R. M. Sillerol, F. Falcone, T. Lopetegi, Miguel A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, 'Equivalent-circuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines,' IEEE Trans. Microwave Theory Tech.,Vol.53, No.4, pp.1451-1461, Apr. 2005 https://doi.org/10.1109/TMTT.2005.845211