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ABSTRACT

We consider an M*/G/1 queueing system with a random setup time under Bernoulli vacation sched-
ule, where the service of the first unit at the completion of each busy period or a vacation period is
preceded by a random setup time, on completion of which service starts. However, after each service
completion, the server may take a vacation with probability p or remain in the system to provide
next service, if any, with probability (1-p). This generalizes both the M*/G/1 queueing system with a
random setup time as well as the Bernoulli vacation model. We carryout an extensive analysis for the
queue size distributions at various epochs. Further, attempts have been made to unify the results of
related batch arrival vacation models. '
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1. Introduction

Vacation models are characterized by the fact that the idle time of the server may be
used for some other secondary job, for instance to serve the customers in other sys-
tems. Allowing the server to take vacations makes the queueing models more realistic
and flexible in studying real world queueing situations; e.g. see [2, 15, 23]. Applica-
tions of such models arise naturally in call centers with multitask employees, tele-
communication and computer networks, production and quality control problems,
etc. Baba [3], Teghem [32], Rosenberg and Yechiali [27], and Choudhury [6] among
others generalized this type of model for batch arrival queueing systems, and re-
cently, Tadj [29] generalized for a bulk service queueing system. The literature on
vacation models is growing very rapidly and it has become the subject matter of cur-
rent research due to its numerous applications in many real life situations. Instead of
reviewing it here again, it will be more convenient to refer the readers to survey pa-
pers by Doshi [13, 14], Teghem [31], Medhi [25], and also the monograph of Takagi
[30] for more information as well as a complete set of references.

The classical vacation scheme with Bernoulli schedule discipline was introduced
and studied by Keilson and Servi [17]. In their model of type GI/G/1, a single channel
goes on vacation when the queue becomes empty. The server keeps taking vacations
until at least one customer is present in the system upon completion of a vacation

period. If on service completion the queue is not empty, the server goes on vacation

with probability p(p > O) and resumes service with probability g=1-p. Following

the seminal work of Keilson and Servi [15], the queueing model with vacation under
Bernoulli schedule received attention from many authors [9, 18, 19, 24, 26, 28].

Many queueing situations have the feature that the service of the first unit at the
commencement of each busy period needs a random setup time, on completion of
which service begins. This type of queueing system is known as queue with a random
setup time and was investigated by Doshi [12] and Levy and Kleinrock [22], almost
simultaneously. Recently, Choudhury [5, 7], Choudhury and Krishnamoorthy [8], Ke
[16] and Lee and Park [21] among others studied this type of batch arrival queueing
model without and with control operating policies. Although some aspects have been
discussed separately on queueing systems with setup time, Bernoulli schedule, and

multiple vacations, however, no works are found that combine these features to-
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gether, even in most recent studies. The fundamental reason for analyzing such type
of model is that its structure appears in many representations of computer and com-
munication networks. Another reason is that we analyze the stationary system behav-
ior in more depth. Most of the previous studies only give solutions in terms of gener-
ating functions; e.g. see {5, 7, 9]. However, in the present study, we develop a more
detailed analysis which includes recursive completion of limiting probabilities. To
this end, the mathematical methodology will be based on a combination of the em-
bedded Markov chain technique and the theory of Markov regenerative processes.

In this paper, we first describe the mathematical model in section -2. Section -3
deals with queue size distribution at a busy period initiation epoch. The queue size
distribution due to idle period process is discussed in section -4. The embedded
Markov chain at a departure epoch of the queue size distribution is investigated in
section -5. Finally, in section -6, we study the queue size distribution of the server’s

state.

2. Mathematical Model

We consider a single server queueing system in which arrival occurs according to a
compound Poisson process with batches of random size X. The server is turned off as
soon as the system becomes empty. The system becomes operative only when one or
a batch of customers arrives to the system. At this point, the server does not offer
proper service to the first customer immediately. Rather, it undertakes an additional
amount of time called setup time (SET), during which no proper work is done, in or-
der to bring the system to operative mode (setup period). The setup time random
variable ‘S is assumed to follow a general law of probability with distribution func-
tion (d.f) S5(x), Laplace-Stieltjes transform (LST) 5'(8), and finite moments E(S¥)(k 21) .
On completion of the setup period, the server starts the actual service (busy period) to
the waiting units on an FCFS basis. We assume that the service time random variable
‘B’ follows a general law of probability with d.f B(x), LST B'(é), and finite moments
E(B¥) (k=1). As soon as the service of a unit is completed, the server may go for a vaca-
tion of random length “V’ (vacation period) with probability p (0 < p < 1) or may con-
tinue to serve the next unit, if any, with probability ¢ = (1-p). Otherwise, it turns off

the system and the system will be turned on again if a batch of customers arrives to
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the system. This is the case of the ‘Bernoulli vacation schedule with single vacation’.
Thus, the system remains idle during a turned off period and a random setup period
and these two periods constitute a generalized idle period. Next, we assume that the
vacation random variable 'V’ follows a general probability distribution with d.f V(x),
LST V(6), and finite moments E(V¥) (k21) and is independent of the setup time ran-
dom variable.

Notationally, our model may be denoted as M* )G/ V. /1(BS)/SET queue, where
V, represents single vacation, BS denotes Bernoulli schedule, and SET represents

setup time. Thus the total service time required by a unit to complete the service cycle

is given by

_{B+V with probability p
| B with probability q=(1-p)

3. Queue Size Distribution at Busy Period Initiation Epoch

In this section, we derive the probability generating function (PGF) of the queue size
distribution at a busy period initiation, as a supplementary tool for deriving the

queue size distribution at different epochs. To derive it, we define «, (n21)as the

steady state probability that an arbitrary (tagged) customer finds a batch of ‘#’ cus-
tomers in the queue (including those that are in service, if any) at a busy period initia-
tion epoch (or completion epoch of the idle period). Then, conditioning on the num-
ber of units within the arriving batches during the setup period, and utilizing the ar-

gument of PASTA (see Wolff {34]), we may write following state equation

3 n=i

0:}1=Z]:ai;bjafjfi; nzl 3.1)
= G

where a =Prob[X=k];k=1,2, -, X is the size of arrival batches (a random variable)
with X;'s ii.d. random variables having the same distribution as X, B, = X, + X, +

~+X, . Also,
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aj.”) =Prob {B, =]} is the n-fold convolution of {a;} with itself and afo) =1,
b, = Prob {K’ individual units arrive during a SET}

= I_:_M(_’ul_ds(t) k>0.

Let afz)= iz”oz,x and X(z)= iz”an be the PGFs of {a, n>1} and {a, n21},
n=1 n=1
then from equation (3.1), we have
a(z) = X(z)S (A-A1X(z)) (3.2)

which is the PGF of the queue size distribution at busy period initiation epoch.
The first two factorial moments are given by

E(a)= inaﬂ =o' (1) = E(X)[1+ AE(S)] (3.3(a))

n=1

and Ela{a-1)]

i n(n-e, =o' (1)
n=2
= E[X(X =D)|[1+ AE(S)]+ AE*(X)[AE(S*)+ 2E(S)] (3.3(b))
Note-that expression (3.3(a)) represents the mean (expected) number of arrivals
during the length of the idle period. Now utilizing Little’s formula in (3.3(a)), we get

Ea _1 - :
EZ—X—)— 7 +E(S) = E(TO)'

which is the expression for the expected length of the idle period process of this

model.

4. Queue Size Distribution Due to Idle Period Process

In this section our objective is to obtain the stationary queue size distribution due to
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the idle period process. To obtain it, let us define {w,; n20} as the steady state pro-

bability that a batch of ‘n’ customers arrived before a tagged customer during the
forward recurrence time (residual life) of the idle period in which the tagged cus-
tomer is chosen randomly from the arriving batch that turns up at the busy period
initiation epoch. Now since the batch of arriving customers is associated with the
tagged customer which is chosen randomly from the arriving batches that turns up at
the busy period initiation epoch, by virtue of “stationary renewal process” (see [20],

page 94), we may write

v,= 3
k=

n+

ﬁ/ n=0/ 1r 2/ (41)
1 k

where {y;k2>1} is the probability that the k-th batch that starts a busy period to
¥ p ty Y P

which the tagged arrival belongs is chosen randomly with probability (1/k). This can
be obtained directly from equation (3.1) by applying length biasing argument of re-

newal theory. Thus, we get

S ——— (42)
7"_271“ ECM+AES) T ‘

n=1

Let w(z) bethe PGFof {y, ; n>0}, then we have

w(z) = [1-a(2)] _[1-X@)S (A-AX(2)]
E(X)[1+AE(S)](1-2z)  E(X)[1+AES)(1-z)

(4.3)

which is the PGF of the number of customers arrived during the residual life of the
idle period (i.e. during a turned off period plus a random setup period). Because of
the PASTA property (see Wolff [34]) this is equivalent to the PGF of the number of
customers that arrive during an interval from the beginning of the idle period to a
random point in the idle period. More specifically, we may call it queue size distribu-
tion due to the idle period. Note that for single unit arrival case, our equation (4.3) is

consistent with the result obtained in Takagi [30] (see page 131).
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The mean queue size due to idle period is found to be

Ela(ar—1)]

2E(a)
_ [EX(X - 1)1+ AE(S)) + AE* (X)AE(S®) + 2E(S))]
2E(X)[1+ AE(S)] ‘

L=y ()=

Further, from the utility point of view of the idle time, this can be considered as a
generalized case of the multiple vacation model, where each vacation begins at the

end of a service cycle. Define the following events

T, = length of the turned off period

and T, =length of the setup period.

Thus, we have

E(Tl).-:% and E(T,)=E(S).

Now E:f}.,).
T

0

is the proportion of the expected amount of time spent by the

server in the turned off period to the expected amount of time spent by the server in
the idle period. Hence, by the theory of regenerative processes it follows that
Prob {The server is in turned off period / the server is idle}
= [1+AES)T =¢ (say)

Similarly, it can be shown that
Prob {The server is in setup period / the server is idle}

AES) .
[1-*‘,115(5)]'(1 6.

Now after some algebraic manipulations with (4.3) and using these interpreta-

tions, we can put it in to the form
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{1-X(2)IS (A-AX(z)) L= OI1-S (A-AX(2))]
E(X)(1-z) E(X)E(S)(A— Az)

p(z)= (4.4)

Taking the limit ¢ — 0 (i.e. there is no turned off period in the system ) in (4.4),

we get

Lim ()= [1-5(A-AX(2))]
=0 E(X)E(S)(A-Az)

=y (2) (say) #5)

which is the PGF of the stationary queue size distribution due to the idle period proc-
ess of the multiple vacation model, where the server takes a sequence of vacations
until it finds at least one unit waiting in the system at end of a vacation, and this veri-
fies the result obtained by Doshi [13] (for single unit arrival case). This is true because
of the fact that, in the absence of a turned off period, the random setup time behaves
like a vacation time. Thus, from this point on, the idle period process is identical with
the multiple vacation models.

Now if we consider the SET as a vacation time and suppose that it is determinis-
tic with a constant duration of length T (fixed) , then it will be the case of the T-policy
model (e.g. see Heyman [13]). Thus, for this model, we have S (1-4X(z)) — exp{-4

T(1-X(z))} and E( S )=T and therefore (4.5) reduces to

1 = g~ ATA-X(2)
W,(2)= Boe 1,
TE(X)(A~Az)
which is the PGF of the stationary queue size distribution due to the idle period proc-
ess of the batch arrival queue under T-policy. Note that for Prob [X = 1] = 1, i.e. for the

single unit arrival case, this is consistent with formula (18) of Tadj [29].

Remark 4.1: -

The LST of the distribution of the unfinished work can also be obtained from

(4.4). Let U () be the LST of the probability distribution function for the unfinished

work at a stationary point of the idle period. Then, utilizing the standard argument of

queueing (e.g. see [30], page 118) we can further obtain
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[1-X(B ()5 (1-AX(B (O))]
E(X)[1+AE(S)I[1- B (6)]

U (0) =[5 (0)]=

where B (8)=[q+pV (8)]B (6) is the LST of G i.e., our modified service time ran-

dom variable.
So that the LST of the probability distribution function of the unfinished work

L' (8) (say) of this model can be obtained easily by using the following decomposi-

tion result (e.g. see [8])
U'(8)=U"(M" [ G(mod ified) [ 1; 8)U(6)

where p" = p+ApE(X)E(V) and p=AE(X)E(B) is the utilization factor of the system
(1-p)6

[6-A+AX(B (8)]

distribution of the first unit in a batch to which it belongs in the standard M+/G/1

and U (M" /G(mod ified) /1 ;8)= is the LST of the waiting time

queue with our modified service time, and therefore we have

(1-p")611-X(B'(6)S (A~ AX(B (O)]
E(X)[1+ AES)I[1- B (e)][e-m AX(8 (3))]

@)=

5. Queue Size Distribution at a Departure Epoch

Our next objective is to investigate the steady state queue size distribution at a depar-

ture epoch. To do this, we follow the argument of embedded Markov chain. Let 7,

be the time of n-th service completion epoch i.e., we are considering the epochs at

which total service requested by a customer expires. The sequence N =N(z +0)

B
forms a Markov chain, which is the embedded Markov renewal process of a continu-
ous time Markov processes.

The sequence {N,; m 20} is a homogeneous Markov chain and it is owing to the

m’

transition
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N X +V W . -1, N =0,
m N, +V, .. -1 N, >0.

where V is the number of units that arrived during the m-th service périod, W is
the number of units that arrived during the m-th setup period and X, is the size of
the first batch. Then, the transition probability matrix P =(F, ;) is readily seen to be a
A, -matrix, which is a special case of A -matrices introduced and studied by Abol-
nikov and Dukhovny [1]. Our A, -matrix differs from that of the M*/G/1 queuein
the first row only. Consequently, o <1, where p' = AE(X)[E(B)+pE(V)], is the nec-
essary and sufficient condition for existence of the steady state solution, which we
assume to be met throughout the paper.

Now, we assume p <1 to guarantee that {N_; m>0} is recurrent-positive.

Thus, the limiting probabilities

7, =limProb{N,_ =j}; j2

11-—yoo

exist and are positive.

This means that {z;; j20} is the steady state probability that " customers are left

behind by a departing customer. Then, the one step transition probability matrix
P=(P, ) associated with {N,; m20} has the elements

j+1

Z am (thl'—mﬂ + Pf}'-mﬂ) lf i= 0’] 2 0
m=1

Pi,jz (thl'—nz+1+pf}—nl+l) If }21_1
0 if i21,0<j<i=1

where h} = Prob {Several batches totaling ‘/’ customers during a service time ‘B’}

=f} ” (’“) AVdB(E); j20,

h/.z = Prob {Several batches totaling ‘j' customers during a vacation time ‘V'}

Dy

k=0

At
(’“) aldv(t); j20,
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and f, =3 hhi ; k20.

Then, the Kolmogorov equation associated with the Markov chain {N, ; m >0}

can be written as 7z, = Z/TIPI] This implies that
i=0

j+1

T = D (me, + 2 Mgh_y +Pf ik J20. (5.1)
i=1

Because of the presence of convolutions, equation (5.1) can be transformed with
the help of following PGF’s

7(z) = izfﬂi , H(z)= iz’h;; fori=1,2
=0 =0
and F(z)=Y2/f, = H,(2)H, (2).
Note that H,(z)=B (1-AX(z)) and H,(z)=V (1-1X(2)).

Now utilizing (3.2) in (5.1), it becomes

7,[1-X(2)S (A - AX(2))]lg + pV (A AX(2))|B (A - AX(2))

7(z) = : : (52)
Hg+pV (A-AX(2))}B (A-AX(z))-z]
Since #(1)=1, equation (5.2) yields
(1-p) 5.3)

* T B+ AES)]

which is the steady state probability that no unit is waiting at a departure epoch.
Also, from equation (5.3), we have p* <1, which is the stability condition under which

steady state solution exists.
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Thus, we have

(1-p)1-X(2)S (A= AX(2)]lq +pV (A~ AX(2))IB (A= AX(z))
EX)[L+AES)Ilg+pV (A= AX(2))}B (A~ AX(2)) - 2]

n(z)=

(5.4)

Note that for p = 0 ( i.e., there is no vacation in the system) and Prob [ X =1]=1
(i.e., for single unit arrival case), the above equation (5.4) is consistent with the result
obtained by Takagi [30] .

The stochastic decomposition property for this model can be demonstrated easily

by showing

n(z) =

1-X(2)S (A-4X(2)) || =P )(1=2)[g+pV (A= AX(2))]B (4 - AX(2))
E(X)[1+AE(S)|(1-2) {g+pV (A-AX(2))}B (A - AX(z))-z

=y (2)r(M" /| G(mod ified)/ 1; z) (5.5)

where 7(M* [ G(mod ified)/1; z), the second factor in the right hand side of (5.5), is

the PGF of the stationary queue size distribution of an M* /G /1 queue with a vaca-
tion time under Bernoulli schedule. This can be obtained easily from Pollaczek-

Khinchine formula by replacing the original service time distribution by our modified
service time distribution, i.e. 8°(8)=[g+pV (8)]B () (in terms of LST) and thus we

have

(1-p )(1=2)[q+pV (A-AX(2))]B (A-AX(2))

m(M* / G(modified) / 1; z) = {g+pV (A-AX(2))B (A-AX(2))-z

(5.6)

Further utilizing (4.4) in (5.5), we may write

7(z) =[{ A(z)L(z) + (1= Oy, (2)]m(M™ / G(mod ified) / 1; z)
where

L(z) =—§%: S (A-AX(z)) is the PGF of the number of units arrived during a
z

setup time;



A BATCH ARRIVAL QUEUE WITH A RANDOM SETUP TIME UNDER BERNOULLI VACATION SCHEDULE 13

Az = LX)

= is the PGF of the number of units placed before a tagged cus-
EX)(1-2)

tomer in a batch in which the tagged customer arrives;

[1-L(2)]
L(1-z)

Now, taking the limit ¢ — 0 and V=5 (i.e., setup time is equivalent to vacation

and Ve (Z) =

time) in (5.6), we get

(1-p)1-V (A= AX(@)Ilg+pV (A~ AX(2))|B (A~ AX(2))
AEXOE(V){g+pV (A= AX(2))}B (A~ AX(2)) 2]

1{1{)13 n(z)=
V=S§

=1,(2) (say) (5.7)

which is consistent with equation (3.21) of Choudhury and Madan [9] and with the
result obtained by Servi [27] for single unit arrival case of Bernoulli schedule vacation
under multiple vacation policy. Thus our equation (5.7) represents the PGF of the de-
parture point queue size distribution of an M*/G/1 queue with Bernoulli schedule va-
cation under multiple vacation policy. Let Lo be the mean queue size at the departure

point of time, then

A2E*(X)[E(B®)+ pE(V?)+2pE(B)E(V)]

L,=7'(1)= 2=
JAEQOP [AES)+2ES) | p'(2-p))E(X,)
2[1+AE(S) ] a-pH)
E{X(X-1)}

where E(X,)= is the mean residual batch size.

2E(X)

6. Servers State Queue Size Distribution

Finally, in this section an attempt has been made to obtain the queue size distribu-

tions due to a setup period, a busy period and a vacation period. To obtain them, we
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follow the argument of regenerative processes. In this case the state of the system at

time ‘¢’ can be described by means of a Markov process X(t):{Y(t), N(B), ﬁ(t)} ,

where Y() =0, 1 or 2 according to whether the server is in setup period, in busy pe-
riod or server is in vacation period at time ‘¥, N(t) represents the number of custom-
ers in the queue (including the customer in the service, if any) at time ¢, and if Y(t) €

{0, 1, 2}, then £(t) represents the corresponding elapsed setup time, service time and

vacation time in progress.

We neglect the elapsed times &(t), then the theory of Markov regenerative proc-
esses guaranteees that for (i, j) € Q, where Q={i=0,j21andi=1, 2, j 20}, the limit-

ing (time average) probabilities
Q,, =limPr ob{Y(t), N(t)=(i, )}

exist.
Again, since the arrival process is compound Poisson process, it follows from

Burke’s theorem (see Cooper [11], pages 187-188) that the stationary probabilities

{Qi,j ; (L)e Q} are positive under the same conditions of limiting probabilities

{z;j2 O} of the embedded Markov chain {N,;m20} ie,ifandonlyif p <1.
Then {X(t); t> 0} is a Markov regenerative process with embedded Markov re-

newal process {Nm ; mZO}, hence we may use classical limiting theorems estab-

lished by Cinlar [10] to obtain

Zﬂ.n’[n(i’ ])
Q,="—— (iL,)eQ (6.1)

where

e 7.(i,j) is the expected amount of time spent by the process {X(t); t> 0} in the

state (i, j) during an interval of time between two successive total completion ep-

ochs i.e. service given that at the beginning of this interval the number of cus-
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tomers in the queue was ‘n’
o m: is the expectation length of the service cycle given that at the beginning of this
interval the number of customers in the queue was ‘n’.
We first note that

_| S+ ES)HE®)+pE(V); for n=0
" E(B)+pE(V); for n>1
and therefore
iﬂnmn = [/?'E(X)]~1 (6.2)

First of all let us consider the case of stationary queue size distribution due to
setup period. For this case, substituting (6.2) in equation (6.1) and a simple probabil-
ity argument leads to

A
Qy, =AEX)D 4, ) bal; j21, (6.3)
i= k=0

where Ab, =(1-b,); k20.

However, for the cases of a busy period and a vacation period need a little more care.

Now let us suppose that the service time ends (i.e., busy period expires) leaving
‘n’ customers in the queue. We may distinguish two cases according to the origin of
the customer who receives the next service. Let us assume that this customer is a pri-
mary one then its service starts at time (say) =0. Then we observe that the time inter-

val (t, t+At) contributes to 7, (1, j) if:

(i) the service has not been completed before time ¢ ( with probability [1-B(#)], and

(ii) (j-n+1) primary customers arrive during (0, t] and therefore we have

T.(L,))= k; ; for j=zmax(0,n-1) (6.4)

—n+1/
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joe —At ﬂtl ; .
where k; =ZJ‘%H§)(1—BU)W} j20.

i=0 g

Now, utilizing the argument of regenerative processes (see Tijms [33], page 288)

and using (6.2) in (6.1), we get on simplification

j+1

j+1
Q= AE(X){HOZa@k;_M + 2k ] ;720 (6.5)

n=1 n=1

Proceeding in similar manner for the case of vacation period it can be shown that

j+1 j-n+l j+1 j-n+1

Qz/}‘ = /IPE(X) |:”02an Z hilka—nﬂ—i +Z7l'” Z hilk}?—nﬁ—i:i" ] 20 (66)

n=1 i=1 n=1 i=1

j oo At Ztl ; .
where k/.2 :Z J‘%ﬂj ) (1—V(t))dt; j20.

i=0 g
A stable recursive scheme for the computation of the limiting probabilities

{Q,.l],,' i=1,2and j=0} in terms of {7[/,; jz O} follows by combining (5.1) with (6.5)
and (6.6).

The stationary probabilities of server states are given by

= A=PDAECOES)
[1+ AE(S)]

Prob {the server is in busy period} = Q, (1) = 4 E(X) E(B)
Prob {the server is in vacation period} = Q,(1)= ApE(X)E(V).

Prob {the server is in setup period} = Q,(

Now, let us consider the PGF’s of {QOJ.; iz and{Qi/j; j=0}fori=1, 2 which
follows from (6.4) and for i = 1, 2 from equations (6.5), (6.6) on utilizing (5.3) and (5.4).

Then routine algebraic manipulation of equations (6.4), (6.5) and (6.6) leads to

(1-p)X(2)[1-5" (A~ AX(2) |
[1+2ES) |[1-X(2) ]

Qy(2)=
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(1-p)[1-X(z)S" (A~ AX(z))|[1-B (A~ AX(z))]
(14 2E(S) [[1-X(2) ][ {3+ PV (A= AX(2D} B (A= AX(2))~2
p-p)[1-X(2)S (A-AX(2) || 1~ V' (A-1X(2)) |B' (A~ AX(2))
[1+2E)][1 —X(z)]Hq +pV' (A-AX(2)} B*(Z*ZX(Z))-Z]

Q2=

Q,(z) =

which are the PGF’s of the queue size distribution due to setup period, busy period
and vacation period respectively.
Further if we denote Po as the stationary probability that the server is idle, then

from the observer point of view (see Chaudhry [4]), we may write

P, =m E(X) =_Qii)—.
o [1+AE(S)]

Next, the stationary queue size distribution at a random epoch is given by

P(z) =P, +Q,(2) +2[ Q,(2) +Q,(2)]
_a- o) —z)[l -X(z)S" (A—ﬂX(z))}[qu'(,z—AX(z))] B (A~ AX(2))
[1+2ES)|[1- X(z)][{q + pV*(/l*/lX(z))} B (A-AX(z))- z]

Thus, the relationship between the stationary queue size distribution at a random

epoch and at a post departure epoch is given by

P(z)= (1-2)E(X) mz)
[1-X(2)]
as expected.
Next we derive following system characteristics as follows
: 1-p,

The mean busy period is given by E(T)) = E(T)

_[1+AE©S)]
AP,

0

(1-F,)
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and the mean busy cycle is given by E(T..) = E(T,) + E(T})
_[1+AE®)]
AP,

0

The expected number of units in the queue during the busy period, vacation pe-

riod and setup period are given as follows

E(N,)=Q((D)=

2p2 B)| AE(S*)+2E(S
“2<X{E(BZ+E( [ AE(S?)+ <>]}
[1+ AE(S)]

A2EX(X){E(B*)+pE(V*)+2pE(B)E(V)}  E(X,)
2(1-p") 1-p)

+/1E(X)E(B){ +

A2E(X) | E(V)[AES?)+2E(S)]
2 [1+AE(S)]

E(Nv)=Q§(1)=P{ +E(V2)+2E(B)E(V)}

AE*(X){E(B*)+ pE(V*)+2pE(B)E(V)} LX)
201-p") (1-p")

+/1E(X)E(V){

AE(X)(1- p Y AE(S?) +2E(S)
and E(N;)=Q)(1)= 2[“{%(5)] }

So that the mean queue size at the stationary point of time is given by

L, = E(N,)+E(N,)+E(N)

AEX(X){E(B*)+ pE(V*)+2pE(B)E(V))

2(1-p)
AE(X)[ AE(S")+2E(S) | L EXQP
2[1+ AE(S)] 1-p)

For p =0, we obtain

B (X)E(BY) %ﬂE(X)[ﬂE(SZ)HE(S)] JEXp
e 201-p) 2[1+AE(S)] 1-p)
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which is the mean queue size at a stationary point of time for an M*/G/1/SET

queue (e.g., .see [5]).
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