DOI QR코드

DOI QR Code

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young (School of Electrical and Information Engineering, Wonkwang Uni.) ;
  • Kim, Cheol-Ho (School of Electrical and Information Engineering, Wonkwang Uni.) ;
  • Kim, Jae-Jin (School of Electrical and Information Engineering, Wonkwang Uni.) ;
  • Lee, Jung-Hoon (School of Electrical and Information Engineering, Wonkwang Uni.) ;
  • Lee, Hee-Seung (Dept. of Electrical and Electronics, Kunjang College) ;
  • Shin, Yong-Deok (School of Electrical and Information Engineering, Wonkwang Uni.)
  • 발행 : 2009.12.01

초록

The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

키워드

참고문헌

  1. Patricia A. Hoffman, 'Thermo Elastic Properties of Silicon Carbide-Titanium Diboride Particulate Composites,' M S Thesis, Pennslyvania State University, 1992
  2. Hideto Hashiguchi, and Hisashi Kimugasa, ' Electrical Resistivity of a-SiC Ceramics Added with NiO,' J Ceram. Soc. Japan, 102[2], pp. 160-164, 1994 https://doi.org/10.2109/jcersj.102.160
  3. M. Nakamura, I Shigematsu, K. Kanayama, and Y. Hirai, ' Surface Damage in ZrB2-based Composite Ceramics Induced by Electro-Discharge Machining,' J Mater. Sci., 26, pp. 6078-6082, 1991 https://doi.org/10.1007/BF01113887
  4. Y. D. Shin, and J. Y. Ju, ' Effect of In Situ YAG on Microstructure and Properties of the PressurelessSintered $SiC-ZrB_2$ Electroconductive Ceramic Composites,' Trans. KlEE, vol. 55C, no. 11, pp. 505-513, 2006
  5. Y. D. Shin, and J. Y. Ju, ' Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Cεramic Composites,' Trans. KlEE, vol. 55C, no. 9, pp. 434-441, 2006
  6. Y. D. Shin, J. Y. Ju, and T. H. Ko, ' Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of LiquidSintered Silicon Carbide System,' Trans. KlEE, vol. 56C, Nn. 9, pp. 1602-1608, 2007
  7. Yong-Deok Shin, and Jing-Young Ju, ' Properties and Manufacturε of the $\beta-SiC-ZrB_2$ Composites Densified by Lìquìd-Phase Sintering,' Trans. KlEE. vol. 48C, no. 2, pp. 93-97, 1998
  8. K. A. Khor, L. G. Yu, S. H. Chan, and X. J. Chen, 'Dεnsìfication of plasma sprayed YSZ electrolytes by spark plasma sinterìng (SPS),' Journal of the European Ceramic Society, 23 1855-1863, 2003 https://doi.org/10.1016/S0955-2219(02)00421-1
  9. Xiaoyan Song, XuemεLiu, and Jiuxing Zhang, 'Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering,' J Am. Ceram. Soc., 89 [2] 494-500, 2006 https://doi.org/10.1111/j.1551-2916.2005.00777.x
  10. Shu-Qì Guo, Toshiyuki Nishimura, Yutaka Kagawa, and Jenn-Mìng Yang, ' Spark Plasma Sìnterìng of Zirconìum Diborides,' J Am. Ceram. Soc., 91 [9], 2848-2855, 2008 https://doi.org/10.1111/j.1551-2916.2008.02587.x
  11. Zhìjían Shen, Mats Johnsson, Zhε Zhao, and Mats Nygren, ' Spark Plasma Sintering of Alumina,' J Am. Ceram. Soc., 85 [8] 1921-27, 2002 https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  12. L. J. van der Paw, 'A Method of Measuring Spεcific Resistivity and Hall Effect of Discs of Arbitrary Shape,' Philips Res. Repts. l3, 1-9, 1958
  13. Alireza Rezaie, Wi1liam G. Fahrenholtz, and Gregory E. Hilmas, ' Oxidation of Zirconium Diboride-Silìcon Carbide at 1500 0C at a Low Partial Pressure of Oxygen,' J Am. Ceram. Soc., 89 [10], pp. 3240-3245, 2006 https://doi.org/10.1111/j.1551-2916.2006.01229.x
  14. F. Monteverde, and A. Bellosi, ' Oxidation of ZrB2- Based Ceramics in Dry Air,' Journal of The Electrochemical Society., 150 [11], B552-B559, 2003 https://doi.org/10.1149/1.1618226
  15. Diletta Sciti, Cesare Melandri, and Alida Bellosi, 'properties of $ZrB_2$- Reinforced Tenary Composites,' Advanced Engineering Materials, 6 [9], pp. 775-781 , 2004 https://doi.org/10.1002/adem.200400039
  16. Cathleen Mroz, 'Zirconium Diboride,' J. Am. Ceram. Soc., Bull., 74 [6], pp. 164-165, 1995
  17. F. Monteverde, A. Bellosi, and S. Guicciardi, ' Processing and Properties of Zirconium Diboridebased Composites,' Journal of the European Ceramic Society, 22. pp. 279-288, 2002 https://doi.org/10.1016/S0955-2219(01)00284-9
  18. J. B. Hurst, and S. Dutta, ' Simple Processing Method for High-strength Silicon Carbide,' J. Am. Ceram. Soc., 70 [11], pp. C303-308, 1987
  19. M. Nader, F. Aldinger, and M. J. Hoffmann, ' Influence of the $\alpha/\beta$ Phase Transfonnation on Microstructural Development and Mechanical Propertics of Liquid Phasc Sintered Silicon Carbidc,' J. Mat. Sci., 34. pp. 1197-1204, 1999 https://doi.org/10.1023/A:1004552704872
  20. Y. W. Kim, M. Mitomo, H. Emoto, and J. G. Lee, ' Effect of Initial a-Phasε Content on Microstructure and Mechanical Properties of Sintered Silicon Carbidea,' J. Am. Ceram. Soc, 81 [12], pp. 3136-3140, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  21. Y. W. Kim, M. Mitomo, and H. Hirotsuru, ' Microstructure Development of Silicon Carbide Containing Large Seed Grains,' J. Am. Ceram. Soc., 80 [1], pp. 99-105, 1997 https://doi.org/10.1111/j.1151-2916.1997.tb02796.x
  22. We, lmlll Wang, Zhengyi Fu, Hao Wang, and Runzhang Yuan, 'Influεnce of Hot Pressing Sintering Tempcrature and Time on Microstructure and Mεchanical Properties of TiB2 Ceramics,' Journal of the European Ceramic Society, 22. pp. 1045-1049, 2002 https://doi.org/10.1016/S0955-2219(01)00424-1
  23. Akira Kondo, ' Electrical Conduction Mechanism in Recrystallized SiC,' Journal of the Ceramic Socien of Japan. lnt. Edition, vol. 100, pp. 1204-1208, 1993

피인용 문헌

  1. The Development of an Electroconductive SiC-ZrB2Composite through Spark Plasma Sintering under Argon Atmosphere vol.5, pp.2, 2010, https://doi.org/10.5370/JEET.2010.5.2.342
  2. Nano-ceramic support materials for low temperature fuel cell catalysts vol.6, pp.10, 2014, https://doi.org/10.1039/C4NR00402G
  3. Effects of Pressure on Properties of SiC-ZrB2Composites through SPS vol.60, pp.11, 2011, https://doi.org/10.5370/KIEE.2011.60.11.2083
  4. Potential-current characteristics in SiC/ZrB 2 composite ceramics 2018, https://doi.org/10.1016/j.jeurceramsoc.2018.01.020
  5. A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2Composites vol.6, pp.4, 2011, https://doi.org/10.5370/JEET.2011.6.4.543
  6. Machining of ZrB2-SiC Composites by Wire-EDM Technique vol.73, pp.2, 2014, https://doi.org/10.1080/0371750X.2014.922420
  7. Effect of zirconium diboride addition on the properties of silicon carbide composites vol.39, pp.8, 2013, https://doi.org/10.1016/j.ceramint.2013.05.075
  8. Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2Composites vol.8, pp.6, 2013, https://doi.org/10.5370/JEET.2013.8.6.1474
  9. Electrical Transport and Joule Heating of ZrB2 Network in SiC Matrix vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.08