DOI QR코드

DOI QR Code

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Published : 2009.12.01

Abstract

This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.

Keywords

References

  1. J. K. Kim, et al., ' Temperature rise prediction of EHV GIS bus bar by coupled magnetothermal finite element method,' IEEE Trans. , Magn. , vol. 41, no. 5, pp. 1636-1639, May 2005 https://doi.org/10.1109/TMAG.2005.846117
  2. J. Wciss, and Z. J. Csendes, 'A one-step finite elcment method for multiconductor skin effect problems,' IEEE Trans. ,Power App. Syst. , vol. PAS-101, no. 10, pp. 3796-3800, October 1982 https://doi.org/10.1109/TPAS.1982.317065
  3. H. K. Kím, et al., ' Efficient technìque for 3-D finite element analysis of skin effect in current-carrying conductors,' IEEE Trans., Magn., vol. 40, no. 2, pp.1326-1329, March 2004 https://doi.org/10.1109/TMAG.2004.824566
  4. Yunus A. Cengel, Heat Transfer: a practical approach, 2nd ed., McGraw-Hill, 2002
  5. S. V. Patankar, Mumerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., 1980

Cited by

  1. Experimental and Analytical Study on the Bus Duct System for the Prediction of Temperature Variations Due To the Fluctuation of Load vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.2036
  2. Application of Computational Fluid Dynamics to Reduce the New Product Development Cycle Time of the ${\rm SF}_{6}$ Gas Circuit Breaker vol.27, pp.1, 2012, https://doi.org/10.1109/TPWRD.2011.2170711
  3. A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar vol.11, pp.3, 2016, https://doi.org/10.5370/JEET.2016.11.3.781
  4. Geometry optimization to reduce enclosure losses and outer magnetic field of gas insulated busbars vol.81, pp.2, 2011, https://doi.org/10.1016/j.epsr.2010.10.006
  5. Application of Duhamel’s Theorem in the Analysis of the Thermal Field of a Rectangular Busbar vol.14, pp.1, 2019, https://doi.org/10.1007/s42835-018-00045-1