기하 쌍대성의 원리가 적용된 비디오 디인터레이싱 알고리듬

A Video Deinterlacing Algorithm Using Geometric Duality

  • 이광보 (안양과학대학 전문사관과) ;
  • 박성한 (한양대학교 컴퓨터공학부)
  • Lee, Kwang-Bo (Dept. of Non-Commissioned Officers, Anyang Technical College) ;
  • Park, Sung-Han (Dept. of Computer Science Engineering, Hanyang University)
  • 발행 : 2009.11.25

초록

본 논문에서는 저해상도 유추 보간법(interpolation algorithm derived from low resolution: ILR)을 이용한 공간적 디인터레이싱 기법을 제안한다. 일반적인 에지 기반 디인터레이싱 방법들은 화소 단위의 상관도를 이용하기 때문에 잡음과 밝기의 변화에 민감하다는 단점이 있다. 또 보간의 성능을 좌우하는 정확한 에지 방향을 판단함에 있어서 만족스럽지 못한 성능을 보인다. 이러한 한계를 극복하기 위해 본 논문에서는 먼저 보간 하고자 하는 픽셀 주위의 저해상도 블록의 특성을 먼저 탐구하고 이를 고해상도 블록에 적용함으로써 missing pixel 을 보간 하는 방법을 제안한다. 실험결과 제안하는 방법은 기존의 화소 단위의 에지 기반 디인터레이싱 방법보다 PSNR로 대표되는 객관적 성능과 주관적 화질 측면에서 우수한 결과를 나타내는 것을 볼 수 있었다.

A single field deinterlacing method, namely interpolation algorithm derived from low resolution (ILR), is presented in this paper. Traditional deinterlacing methods usually employ edge-based interpolation technique within pixel-based estimation. However, edge-based methods are somehow sensitive to noise and intensity variation in the image. Moreover, the methods are not satisfied in deciding the exact edge direction which controls the performance of the interpolation. In order to reduce the sensitivity, the proposed algorithm investigates low-resolution characteristics of the pixel to be interpolated, and applies it to high-resolution image. Simulation results demonstrates that the proposed method gives not only a better objective performance in terms of PSNR results compare to conventional edge-based interpolation methods, but also better subjective image quality.

키워드

참고문헌

  1. K. Jack, "Video demystified - A handbook for the digital engineer," Elsevier, 2005
  2. Y.-L. Chang, S.-F. Lin, C.-Y. Chen, and L.-G. Chen, "Video de-interlacing by adaptive 4-field global/local motion compensated approach," IEEE Trans. Circuits and Syst. Video Technol., vol. 15, no. 12, pp. 1569-1582, Dec. 2005 https://doi.org/10.1109/TCSVT.2005.858746
  3. S. Yang, Y.-Y. Jung, Y.H. Lee, and R.-H. Park, "Motion compensation assisted motion adaptive interlaced-to-progressive conversion," IEEE Trans. Circuits and Syst. Video Technol., vol. 14, no. 9, pp. 1138-1148, Sep. 2004 https://doi.org/10.1109/TCSVT.2004.833163
  4. H.-S. Oh, Y. Kim, Y.-Y. Jung, A.W. Morales, and S.-J. Ko, "Spatio-temporal edge-based median filtering for deinterlacing," in Proc. IEEE ICCE, pp. 52-53, 2000
  5. E.B. Bellers and G. De Haan, "De-interlacing: A key technology for scan rate conversion," Elsevier, Amsterdam, 2000
  6. T. Doyle, "Interlaced to sequential conversion for EDTV applications," in Proc. 2nd Int. Workshop Signal Processing of HDTV, pp. 412-430 Feb. 1990
  7. T. Chen, H.R. Wu, and Z.H. Yu, "Efficient deinterlacing algorithm using edge-based line average interpolation," Opt. Eng., vol. 39, no. 8, pp. 2101–2105, August 2000 https://doi.org/10.1117/1.1305262
  8. W. Kim, S. Jin, and J. Jeong, "Novel intra deinterlacing algorithm using content adaptive interpolation," IEEE Trans. Cons. Elect., vol. 53, no. 3, pp. 1036-1043, Aug. 2007 https://doi.org/10.1109/TCE.2007.4341583
  9. H. Yoo and J. Jeong, "Direction-oriented interpolation and its application to de-interlacing," IEEE Trans. Cons. Elect., vol. 48, no. 4, pp. 954-962, Nov. 2002 https://doi.org/10.1109/TCE.2003.1196426
  10. M.K. Park, M.G. Kang, K. Nam, and S.G. Oh, "New edge dependent deinterlacing algorithm based on horizontal edge pattern," IEEE Trans. Cons. Elect., vol. 49, no. 4, pp. 1508-1512, Nov. 2003
  11. D.-H. Lee, "A new edge-based intra-field interpolation method for deinterlacing using locally adaptive-thresholded binary image," IEEE Trans. Cons. Elect., vol. 54, no. 1, pp. 110-115, Feb. 2008 https://doi.org/10.1109/TCE.2008.4470032
  12. P. Perez, F. Heitz, "Restriction of a Markov random field on a graph and multiresolution statistical image modeling," IEEE Trans. Information Theory, vol. 42, no. 1, pp. 180-190, Jan. 1996 https://doi.org/10.1109/18.481788
  13. G. de Haan and E.B. Bellers, "Deinterlacing – An overview," Proceedings of the IEEE, vol. 86, No. 9, Sep. 1998, pp. 1839-1857 https://doi.org/10.1109/5.705528