3차원 얼굴 모델링을 위한 스캔 데이터의 통합 방법

A Method of Integrating Scan Data for 3D Face Modeling

  • 발행 : 2009.11.25

초록

여러 시점에서 계측한 3차원 데이터를 통합하는 기술은 3차원 모델링에 매우 중요한 기술이다. 기존의 표면(Surface)통합 방법들은 정합오차와 잡음에 민감하다. 본 논문에서는 표면의 지역적 지형을 이용하는 표면통합 알고리즘을 제안한다. 제안하는 알고리즘은 먼저 인접한 표면 사이에서 일정 지형적 조건을 만족하는 외곽정점의 쌍, 즉 대응정점을 찾아 표면 사이의 지역을 여러 지역으로 구분한다. 다음으로 주성분 분석(PCA)을 통해 각 지역에 대한 최접합 평면(Best Pitting Plane)을 계산하여 표면 사이에 삽입될 삼각형의 생성에 이용한다. 제안하는 알고리즘은 지역적 단위로 지형을 이용하여 인접한 표면을 통합하기 때문에 정합오차와 잡음에 강건하다. 본 논문에서는 또한 변수화(Parameterization)기술을 이용하는 질감(Texture)통합 방법을 제안한다. 제안하는 방법은 통합된 표면을 각 표면의 초기시점으로 변환하고 해당 시점의 질감영상을 투영한다. 투영된 질감영상들을 통합된 표면의 2차원 변수화 표면에 할당하여 표면들이 통합된 이음새를 따라 통합한다. 실험을 통해 제안하는 방법이 얼굴모델링에 효율적임을 보인다.

Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, the existing integration methods are sensitive to registration errors and surface scanning noise. In this paper, we propose a integration algorithm using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition in the areas between neighboring surfaces, and then separates areas to several regions by using boundary vertex pairs. We next compute best fitting planes suitable to each regions through PCA(Principal Component Analysis). They are used to produce triangles that be inserted into empty areas between neighboring surfaces. Since each regions between neighboring surfaces can be integrated by using local surface topology, a proposed method is robust to registration errors and surface scanning noise. We also propose a method integrating of textures by using parameterization technique. We first transforms integrated surface into initial viewpoints of each surfaces. We then project each textures to transformed integrated surface. They will be then assigned into parameter domain for integrated surface and be integrated according to the seaming lines for surfaces. Experimental results show that the proposed method is efficient to face modeling.

키워드

참고문헌

  1. H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald, and W. Stuetzle, 'Surface reconstruction from unorganized points' SIGGRAPH 92, pp.71-78, 1992
  2. B. Curless and M. Levoy, 'A Volumetric Method for Building Complex Models from Range Images', SIGGRAPH 96, pp.303-312, 1996 https://doi.org/10.1145/237170.237269
  3. M. Kazhdan, M. Bolitho and H. Hoppe, "Poisson surface reconstruction", Eurographics Symposium on Geometry Processing, pp.61-70, 2006
  4. G. Turk and M. Levoy, "Zippered Polygon Meshes from Range Images", SIGGRAPH 94, pp.311-318, 1994 https://doi.org/10.1145/192161.192241
  5. G. Hausler, S. Karbacher, 'Reconstruction of Smoothed Polyhedral Surfaces from Multiple Range Images', 3D Image Aanalysis and Synthesis, pp.191-198, 1997
  6. Y. Sun, J. Paik and A. Koschan, 'Surface modeling using multi-view range and color images', Integrated computer-aided engineering, Vol.10, No.1, pp.37-50, 2003
  7. A. Sappa and M. Garcia, 'Incremental Multiview Integration of Range Images', International Conference on Pattern Recognition, Vol.15, No.1, pp.546-549, 2000
  8. M. Soucy, D. Laurendeau, 'A general surface approach to the integration of a set of range views', IEEE transactions on pattern analysis and machine intelligence, Vol.17 No.4, pp.344-358, 1995 https://doi.org/10.1109/34.385982
  9. H. Zhou and Y. Liu, 'Accurate integration of multi-view range images using k-means clustering' Pattern recognition, Vol.41, No.1, pp.152-175, 2008 https://doi.org/10.1016/j.patcog.2007.06.006
  10. F. Pighin, J. Hecker, D. Lischinski, and R. Szeliski, 'Synthesizing Realistic Facial Expressions From Photographs', Computer graphics: SIGGRAPH 98; conference proceedings, 1998, pp.75-84, 1998
  11. A. Soh, Y. Zhang, K.Y. Chan, E.C. Prakash, and E. Sung, "Texture Mapping of 3D Human Face for Virtual Reality Environments", International Journal of Information Technology, Vol.8, No.2, 54–65, 2002
  12. Y. Zhang, N. I. Badler, 'Synthesis of 3D faces using region-based morphing under intuitive control', Computer Animation and Virtual Worlds, Vol.17 No.3/4, pp.421-432, 2006 https://doi.org/10.1002/cav.145
  13. H. Yamauchi, H. P. Lensch, J. r. Haber, H. P. Seidel, "Textures revisited", The Visual computer, Vol.21 No.4, pp.217-241, 2005 https://doi.org/10.1007/s00371-005-0283-5
  14. P.J. Besl and H.D. McKay, 'A method for registration of 3-D shapes', IEEE transactions on pattern analysis and machine intelligence, Vol.14 No.2, pp.239-256, 1992, https://doi.org/10.1109/34.121791
  15. J. H. Friedman, J. L. Bentley, and R. A. Finkel, 'An algorithm for finding best matches in logarithmic expected time', ACM Transactions on Mathematical Software, Vol.3, No.3, pp.209-226, September 1977 https://doi.org/10.1145/355744.355745
  16. M. Lamot and B. Zalik, "A fast polygon triangulation algorithm based on uniform plane subdivision" Computers & graphics, Vol.27 No.2, pp.239-253, 2003 https://doi.org/10.1016/S0097-8493(02)00281-9
  17. N. J. Mitra, A. Nguyen, L. Guibas, 'Estimating Surface Normals in Noisy Point Cloud Data', International journal of computational geometry & applications, Vol.14, No.4/5, pp.261-276, 2004 https://doi.org/10.1142/S0218195904001470
  18. S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, "The Lumigraph" SIGGRAPH 96, pp.43-54, 1996 https://doi.org/10.1145/237170.237200
  19. M. S. Floater, 'Mean value coordinates', Computer Aided Geometric Design archive Vol.20, No.1, March 2003 https://doi.org/10.1016/S0167-8396(03)00002-5