Enzymatic Formation of 13,26-Dihexyl-1,14-dioxacyclohexacosane-2,15-dione via Oligomerization of 12-Hydroxystearic Acid

  • Lee, Chan-Woo (Department of Innovative Industrial Technology, Hoseo University) ;
  • Kimura, Yoshiharu (Department of Biomolecular Engineering, Kyoto Institute of Technology) ;
  • Chung, Jin-Do (Department of Environmental Engineering, Hoseo University)
  • Published : 2009.11.25

Abstract

The enzymatic polymerization of 12-hydroxystearic acid (12-HSA) was carried out with Lipase $CA^{(R)}$ in benzene to produce poly(12-hydroxystearate) (PHS) with a low molecular weight. When this polymerization was continued for a long reaction time, the PHS once formed was depolymerized into a cyclic diester, 13,16-dihexyl-1,14-dioxacyclohexacosane-2,15-dione (12-HSAD). Similar polymerization and depolymerization were observed when 12-hydroxyoleic acid (12-HOA) was treated with Lipase $CA^{(R)}$, whereas only polymerization occurred when 12-hydroxydodecanoic acid (12-HDA) was treated in a similar manner. The preferential formation of cyclic diesters for 12-HSA was attributed to the structural requirements due to the bulky n-hexyl side groups stemming from the ring systems.

Keywords

References

  1. Z. F. Xie, Tetrahydron Asymmetry, 2, 733 (1991) https://doi.org/10.1016/S0957-4166(00)80450-4
  2. K. E. Jaeger, S. Ransac, B. W. Dijkastra, C. Colson, M. van Heuvel, and O. F. Misset, Microbiol. Rev., 15, 29 (1994) https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  3. F. Theil, Chem. Rev., 95, 2203 (1995) https://doi.org/10.1021/cr00038a017
  4. R. D. Schemid and R. Verger, Angew. Chem., Int. Ed. Engl., 37, 1608 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
  5. V. Gotor, Bioorg. Med. Chem., 7, 2189 (1999) https://doi.org/10.1016/S0968-0896(99)00150-9
  6. S. Kobayashi, H. Uyama, S. Namekawa, and H. Hayakawa, Macromolecules, 31, 5655 (1998) https://doi.org/10.1021/ma980396n
  7. S. Matsumura, Y. Suzuki, K. Tsukada, and K. Toshima, Macromolecules, 31, 6444 (1998) https://doi.org/10.1021/ma971894j
  8. Y. Mei, A. Kumar, and R. A. Gross, Macromolecules, 35, 5444 (2002) https://doi.org/10.1021/ma020019h
  9. H. Uyama and S. Kobayashi, Chem. Lett., 1149 (1993)
  10. J. S. Wallace and C. J. Morrow, J. Polym. Sci. Part A: Polym. Chem., 27, 2553 (1989) https://doi.org/10.1002/pola.1989.080270807
  11. D. Knani, A. L. Gutman, and D. H. Kohn, J. Polym. Sci. Part A: Polym. Chem., 31, 1221 (1993) https://doi.org/10.1002/pola.1993.080310518
  12. D. O’'Hagan and N. A. Zaidi, Polymer, 35, 3576 (1994) https://doi.org/10.1016/0032-3861(94)90928-8
  13. P. T. Anastas and R. L. Lankey, Green Chemistry, 2, 289 (2000) https://doi.org/10.1039/b005650m
  14. G. Lukacs and M. Ohno, Recent Progress in the Chemical Synthesis of Antibiotics, Springer-Verlag, Berlin, 1990
  15. B. M. Trost and I. Fleming, Comprehensive Organic Synthesis, Pregamon Press, Oxford, 1991, Vol. 6, p 323
  16. H. Gerlach and W. Schilling, J. Am. Chem. Soc., 97, 3515 (1975) https://doi.org/10.1021/ja00845a039
  17. K. Steliou, A. Szczygielska-Nowosielska, A. Favre, M. A. Poupart, and S. Hanessian, J. Am. Chem. Soc., 102, 7578 (1980) https://doi.org/10.1021/ja00545a038
  18. T. Otera, T. Yano, Y. Himeno, and H. Nozaki, Tetrahydron Lett., 27, 4501 (1996) https://doi.org/10.1016/S0040-4039(00)84989-8
  19. H. Kuno, M. Shibagaki, K. Takahashi, I. Honda, and H. Matsusita, Chem. Lett., 571 (1992)
  20. J. D. White, N. J. Green, and F. F. Fleming, Tetrahydron Lett., 34, 3515 (1993) https://doi.org/10.1016/S0040-4039(00)73624-0
  21. S. Matsumura, Macromol. Biosci., 2, 105 (2002) https://doi.org/10.1002/1616-5195(20020401)2:3<105::AID-MABI105>3.0.CO;2-K
  22. N. J. Leonard and F. H. Ownes, J. Am. Chem. Soc., 80, 6039 (1958) https://doi.org/10.1021/ja01555a037