Fabrication of PHBV/Keratin Composite Nanofibrous Mats for Biomedical Applications

  • Yuan, Jiang (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Xing, Zhi-Cai (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Park, Suk-Woo (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Geng, Jia (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Yuan, Jiang (Jiangsu Engineering Research Center for Bio-medical Function Materials, Nanjing Normal University) ;
  • Shen, Jian (Jiangsu Engineering Research Center for Bio-medical Function Materials, Nanjing Normal University) ;
  • Meng, Wan (Department of Chemical Engineering and Polymer Science, Yanbian University) ;
  • Shim, Kyoung-Jin (Department of Immunology, School of Medicine, Kyungpook National University) ;
  • Han, In-Suk (Department of Immunology, School of Medicine, Kyungpook National University) ;
  • Kim, Jung-Chul (Department of Immunology, School of Medicine, Kyungpook National University)
  • 발행 : 2009.11.25

초록

Keratin is an important protein used in wound healing and tissue recovery. In this study, keratin was modified chemically with iodoacetic acid (IAA) to enhance its solubility in organic solvent. Poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and modified keratin were dissolved in hexafluoroisopropanol (HFIP) and electrospun to produce nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, field-emission scanning electron microscopy (FE-SEM) and electron spectroscopy for chemical analysis (ESCA). The pure m-keratin mat was cross-linked with glutaraldehyde vapor to make it insoluble in water. The biodegradation test in vitro showed that the mats could be biodegraded by PHB depolymerase and trypsin aqueous solution. The results of the cell adhesion experiment showed that the NIH 3T3 cells adhered more to the PHBV/m-keratin nanofibrous mats than the PHBV film. The BrdU assay showed that the keratin and PHBV/m-keratin nanofibrous mats could accelerate the proliferation of fibroblast cells compared to the PHBV nanofibrous mats.

키워드

참고문헌

  1. E. A. MacGregor and C. T. Greenwood, Polymers in Nature, John Wiley & Sons Press, New York, 1980
  2. M. E. Van Dyke, S. F. Timmons, C. R. Blanchard, A. J. Siller- Jackson, and R. A. Smith, US Patent 528, 893 (2000)
  3. S. F. Timmons, C. R. Blanchard, and R. A. Smith, US Patent 611, 0487 (2000)
  4. M. E. Van Dyke and A. J. Siller-Jackson, Polym. Mater. Sci. Eng., 87, 453 (2002)
  5. K. Yamauchi, M. Maniwa, and T. Mori, J. Biomater. Sci. Polym. Ed., 9, 259 (1998) https://doi.org/10.1163/156856298X00640
  6. K. Yamauchi and A. Khoda, Colloid Surface B, 9, 117 (1997) https://doi.org/10.1016/S0927-7765(96)01322-7
  7. C. B. Jones and D. K. Mecham, Arch. Biochem., 3, 193 (1943)
  8. A. Kuzuhara and T. Hori, Polymer, 44, 7962 (2003)
  9. K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, and Y. Konishi, J. Biomed. Mater. Res., 31, 439 (1996) https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<439::AID-JBM1>3.0.CO;2-M
  10. A. Tachibana, S. Kaneko, T. Tanabe, and K. Yamauchi, Biomaterials, 26, 297 (2005) https://doi.org/10.1016/j.biomaterials.2004.02.032
  11. M. M. Schrooyen Peter, P. J. Dijkstra, R. C. Oberthuer, A. Bantjes, and J. Feijen, J. Agric. Food Chem., 48, 4326 (2000) https://doi.org/10.1021/jf9913155
  12. M. M. Schrooyen Peter, P. J. Dijkstra, R. C. Oberthuer, A. Bantjes, and J. Feijen, J. Agric. Food Chem., 49, 221 (2001) https://doi.org/10.1021/jf0004154
  13. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000) https://doi.org/10.1021/ma991858f
  14. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  15. C. J. Buchko, K. M. Kozloff, and D. C. Martin, Biomaterials, 22, 1289 (2001) https://doi.org/10.1016/S0142-9612(00)00281-7
  16. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Nano Lett., 3, 213 (2003) https://doi.org/10.1021/nl025866c
  17. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Polymer, 46, 5094 (2005) https://doi.org/10.1016/j.polymer.2005.04.040
  18. Y. Z. Zhang, H. W. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, J. Biomed. Mater. Res. (Appl Biomater), 72, 156 (2005)
  19. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Q. Zhang, Biomaterials, 26, 6176 (2005) https://doi.org/10.1016/j.biomaterials.2005.03.027
  20. X. Y. Geng, O. H. Kwon, and J. Jang, Biomaterials, 26, 5427 (2005) https://doi.org/10.1016/j.biomaterials.2005.01.066
  21. J. A. Matthews, D. G. Simpson, G. E. Wnek, and G. L. Bowlin Biomacromolecules, 3, 232 (2002) https://doi.org/10.1021/bm015533u
  22. L. Huang, K. Nagapudi, R. P. Apkarian, and L. Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001) https://doi.org/10.1163/156856201753252516
  23. L. Huang, R. P. Apkarian, and E. L. Chaikof, Scanning, 23, 372 (2001) https://doi.org/10.1002/sca.4950230603
  24. G. L. Ellman, Arch. Biochem. Biophys., 74, 443 (1958) https://doi.org/10.1016/0003-9861(58)90014-6
  25. B. S. Harrap and E. F. Woods, Biochem. J., 92, 8 (1964) https://doi.org/10.1042/bj0920008
  26. B. S. Harrap and E. F. Woods, Biochem. J., 92, 19 (1964) https://doi.org/10.1042/bj0920019
  27. K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, and B. M. Min, Biomaterials, 27, 1452 (2006) https://doi.org/10.1016/j.biomaterials.2005.08.004
  28. G. A. R. Nobes, R. H. Marchessault, H. Chanzy, B. H. Briese, and D. Jendrossek, Macromolecules, 29, 8330 (1996) https://doi.org/10.1021/ma961219u
  29. H. P. Kasserra and K. J. Laidler, Can. J. Chem., 47, 4031 (1969) https://doi.org/10.1139/v69-669
  30. K. Maghni, O. M. Nicolescu, and J. G. Martin, J. Immunol. Methods, 223, 185 (1999) https://doi.org/10.1016/S0022-1759(98)00220-8
  31. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials, 24, 3859 (2003) https://doi.org/10.1016/S0142-9612(03)00209-6
  32. D. P. Speer, M. Chvapil, C. D. Eskelson, and J. Ulreich, J. Biomed. Mater. Res., 14, 753 (1980) https://doi.org/10.1002/jbm.820140607
  33. F. Gassner and A. J. Owen, Polymer, 35, 2233 (1994) https://doi.org/10.1016/0032-3861(94)90258-5
  34. J. L. Cleland, M. F. Powell, and S. J. Shire, Crit RevTherapeutic Drug Carrier Systems, 10, 307 (1993)
  35. I. S. Lee, O. H. Kwon, W. Meng, I. K. Kang, and Y. Ito, Macromol. Res., 12, 374 (2004) https://doi.org/10.1007/BF03218414
  36. I. K. Kang, S. H. Choi, D. S. Shin, and S. C. Yoon, Int. J. Biol. Macromol., 28, 205 (2001) https://doi.org/10.1016/S0141-8130(00)00165-3