DOI QR코드

DOI QR Code

Development of TaqMan Probe-Based Real-Time PCR Method for erm(A), erm(B), and erm(C), Rapid Detection of Macrolide-Lincosamide-Streptogramin B Resistance Genes, from Clinical Isolates

  • Jung, Jae-Hyuk (College of Pharmacy, Sahmyook University) ;
  • Yoon, Eun-Jeong (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Choi, Eung-Chil (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Choi, Sung-Sook (College of Pharmacy, Sahmyook University)
  • Published : 2009.11.30

Abstract

To achieve more accurate and rapid detection of macrolide-lincosamide-streptogramin B resistance genes, erm(A), erm(B), and erm(C), we developed a TaqMan probe-based real-time PCR (Q-PCR) method and compared it with conventional PCR (C-PCR), which is the most widely using erm gene identification method. The detection limit of Q-PCR was 5 fg of genomic DNA or 5-8 CFU of bacterial cells of Staphylococcus aureus. The utilization of Q-PCR might shorten the time to erm detection from 3-4 h to about 50 min. These data indicated that Q-PCR assay appears to be not only highly sensitive and specific, but also the most rapid diagnostic method. Therefore, the appropriate application of the Q-PCR assay will permit rapid and accurate identification of erm genes from clinical and other samples.

Keywords

References

  1. Clinical and Laboratory Standards Institute (CLSI). 2005. Performance Standards for Antimicrobial Susceptibility Testing; 15th Informational Supplement. Document M100-S15. CLSI, Wayne, PA
  2. Felmingham, D., R. R. Reinert, Y. Hirakata, and A. Rodloff. 2002. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from PROTEKT surveillance study and comparative in vitro activity of the ketolide, telithromycin. J. Aniimicrob. Chemother. 50 Suppl, 81: 25-37
  3. Giovanetti, E., M. P. Montanari, M. Mingoia, and P. E. Varaldo. 1999. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains in Italy and heterogeneity of inducibly resistant strains. Antimicrob. Agents Chemother. 43: 1935-1940
  4. Hindiyeh, M., G Smollen, Z. Grossman, D. Ram, Y. Davidson, F. Mileguir, et al. 2008. Rapid detection of $bla_{KPC}$ carbapenemase genes by real-time PCR. J. Clin. Microbiol. 46: 2879-2883 https://doi.org/10.1128/JCM.00661-08
  5. Horinouchi, S. and B. Weisblum. 1982. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol. 150: 804-814
  6. Jacob, M. R., J. Anon, and P. C. Appelbaum. 2005. Mechanism of resistance among respiratory tract pathogens. Clin. Lab. Med. 24: 419-453 https://doi.org/10.1016/j.cll.2004.03.011
  7. Jing, C., Y. Zhongtang, C. M. Jr. Frederick, W Thomas, and M. Mark. 2007. Development and application of real-time PCR assay for quantification of erm genes conferring resistance to macrolide-lincosamides-streptogramin B in livestock and manure management systems. Appl. Environ. Microbiol. 73: 4407-4416 https://doi.org/10.1128/AEM.02799-06
  8. Kim, H. S., D. M. Kim, G. P. Neupane, Y. M. Lee, N. W. Yang, S. J. Jang, et al. 2008. Comparison of conventional, nested, and real-time PCR assays for rapid and accurate detection of Vibrio vulnificus. J. Clin. Microbiol. 46: 2992-2998 https://doi.org/10.1128/JCM.00027-08
  9. Kim, D. G., S. H. Ahn, L. H. Kim, K. J. Park, Y. K. Hong, and I. S. Kong. 2008. Application of the rpoS gene for species-specific detection of Vibrio vulnificus by real-time PCR. J. Microbiol. Biotechnol. 18: 1841-1847 https://doi.org/10.4014/jmb.0800.176
  10. Kumagai, K., N. Sugano, M. Takane, H. Kwasaki, H. Tanaka, N. Yoshinuma, K. Suzuki, and K. Ito. 2003. Detection of Streptococcus anginosus from saliva by real-time polymerase chain reaction. Lett. Appl. Microbiol. 37: 370-373 https://doi.org/10.1046/j.1472-765X.2003.01405.x
  11. Murphy, E., L. Huwyler, and C. de Freire Bastos Mdo. 1985. Transposon Tn554: Complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 4: 3357-3365
  12. Park, H. J., H. J. Kim, S. H. Park, E. G. Shin, J. H. Kim, and H. Y. Kim. 2008. Direct and quantitative analysis of Salmonella enterica serovar Typhimurium using real-time PCR from artificially contaminated chicken meat. J. Microbiol. Biotechnol. 18: 1453-1458
  13. Pandori, M. W., C. Gordones, L. Castro, J. Engelman, M. Siedner, S. Lukehart, and J. Klausner. 2007. Detection of azithromycin resistance in Treponema pallidium by real-time PCR. Antimicrob. Agents Chemother. 51: 3425-3430 https://doi.org/10.1128/AAC.00340-07
  14. Ralf, R. R., F. Carmen, L. Mark, L. Rudolf, C. Murat, and A. L. Adan. 2004. Molecular characterization of macrolide resistance mechanisms of Streptococcus pneumoniae and Streptococcus pyogenes isolated in Germany, 2000-2003. Int. J. Antimicrob. Agents 24: 43-47 https://doi.org/10.1016/j.ijantimicag.2004.02.020
  15. Sabet, N. S., G. Subramaniam, P. Navaratnam, and S. D. Sekaran. 2007. Detection of mecA and erm(A) genes and simultaneous identification of Staphylococcus aureus using triplex real-time PCR from Malaysian S aureus strain collections. Int. J. Antimicrob. Agents. 29: 582-585 https://doi.org/10.1016/j.ijantimicag.2006.12.017
  16. Schabereiter-Gurtner, C., A. M. Hirschi, B. Dragosics, P. Hufnagl, S. Puz, Z. Kovach, M. Rotter, and A. Makristathis. 2004. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 42: 4512-4518 https://doi.org/10.1128/JCM.42.10.4512-4518.2004
  17. Shaw, J. H. and D. B. Clewell. 1985. Complete nucleotide sequence of macrolide-Iincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164: 782-796
  18. Shobha, K. L., P. S. Rao, and J. Thomas. 2005. Survey of Staphylococcus isolates among hospital personnel, environment and their antibioticgram with special emphasis on methicillin resistance. Indian J. Med. Microbiol. 23: 186-188 https://doi.org/10.4103/0255-0857.16592
  19. Smith, M. S., R. K. Yang, C. W. Knapp, Y. Niu, N. Peak, M. M. Hanfeh. J. C. Galland, and D. W. Graham. 2004. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol. 70: 7372-7377 https://doi.org/10.1128/AEM.70.12.7372-7377.2004
  20. Studer, S., W Schaerent, J. Naskova, H. Pfaeffli, T. Kaufmann, M. Kirchhofer, and A. Steiner. 2007. A longitudinal field study to evaluate the diagnostic properties of a quantitative real-time polymerase chain reaction-based assay to detect Staphylococcus aureus in milk. J. Dairy Sci. 91: 1893-1902 https://doi.org/10.3168/jds.2007-0485
  21. Twagira, M. F. N., J. J. Wade, I. Eltringham, and M. Smith. 2005. Development of a real-time PCR assay on the Roche Light-Cycler for the detection of erm and mef erythromycin resistnace genes in $\beta$-haemolytic Streptocci. J. Antimicrob. Chemother. 56: 793-794 https://doi.org/10.1093/jac/dki290
  22. Uh, Y., I. H. Jang, G. Y. Hwang, M. K. Lee, K. J. Yoon, and H. Y. Kim. 2004. Antimicrobial susceptibility patterns and macrolide resistance genes of beta hemolytic Streptococci in Korea. Antomicrob. Agents Chemother. 48: 2716-2718 https://doi.org/10.1128/AAC.48.7.2716-2718.2004
  23. Uyttendaele, M., K. Vanwildemeersch, and J. Debevere. 2003 Evaluation of real-time PCR vs automated ELISA and a conventional culture method using a semi-solid medium for detection of Salmonella. Lett. Appl. Microbiol. 37: 386-391 https://doi.org/10.1046/j.1472-765X.2003.01415.x
  24. Wertheim, H. F., D. C. Melles, M. C. Vos, A. van Belkum, and J. L. Nouwen. 2005. The role of nasal carriage in Staphylococcus aureus infection. Lcancet Infect. Dis. 5: 751-762 https://doi.org/10.1016/S1473-3099(05)70295-4
  25. Wilfred, P. D. C., Y. R. Joann, M. B. Judith, A. T. Jennfer, and J. D. Patrick. 2007. Rapid determination of macrolide and lincosamide resistance in group B Streptococcus isolated from vaginal-rectal swabs. Inject. Dis. Obst. Gyn. 2007: 46581-46586
  26. Wilhelm, J. and A. Pingoud. 2004. Real-time polymerase chain reaction. Chem. Bio. Chem. 4: 1120-1128 https://doi.org/10.1002/cbic.200300662
  27. Woods, D. F., F. J. Reen, D. Gilroy, J. Buckley, J. G. Frye, and E. F. Boyd 2008. Rapid multiplex PCR and real-time Taqman PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C. J. Clin. Microbiol. 6: 4018-22
  28. Yoon, E. J., J. M. Yoon, S. S. Choi, A. R. Kwon, M. J. Shim and E. C. Choi 2006. The study of MLS-Resistant Gram Positive cocci isolated in Korean hospital. YakHak Hoeji. 50: 204-207

Cited by

  1. Real-time PCR as a diagnostic tool for bacterial diseases vol.12, pp.7, 2009, https://doi.org/10.1586/erm.12.53
  2. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland) vol.25, pp.6, 2018, https://doi.org/10.1007/s11356-017-0861-x
  3. Understanding the impact of antibiotic therapies on the respiratory tract resistome: a novel pooled-template metagenomic sequencing strategy vol.13, pp.suppl1, 2009, https://doi.org/10.1186/s40248-018-0140-9
  4. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration vol.3, pp.1, 2009, https://doi.org/10.1038/s42003-020-01176-w