References
- Andrea, C., G. Carlo, and G. Patrizia. 2008. Phenolic compounds as likely natural mediators of laccase: A mechanistic assessment. J. Mol. Cataly. B Enzym. 51: 118-120 https://doi.org/10.1016/j.molcatb.2007.11.023
- Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye Azure B. Appl. Environ. Microbiol. 58: 3110-3116
- Ardon, O., Z. Kerem, and Y. Hadar. 1996. Enhancement of lactase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatusby cotton stalk extract. J. Biotechnol. 51: 201-207 https://doi.org/10.1016/S0168-1656(96)01597-0
- Azmi, W., R. K. Sani, and U. C. Banerjee. 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Tech. 22: 185-191 https://doi.org/10.1016/S0141-0229(97)00159-2
- Bajpai, P. 2004. Biological bleaching of chemical pulps. Crit. Rev. Biotechnol. 24: 1-58 https://doi.org/10.1080/07388550490465817
- Baldrian, P. and J. Gabriel. 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220: 235-240 https://doi.org/10.1016/S0378-1097(03)00102-2
- Box, J. D. 1983. Investigation of the Folin Ciocalteu's reagent for determination of polyphenolic substances in natural waters. Water Res. 17: 501-525 https://doi.org/10.1016/0043-1354(83)90110-0
- Camarero, S., D. Ibarra, M. J. Martnez, and A. T. Martnez. 2005. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71: 1775-1784 https://doi.org/10.1128/AEM.71.4.1775-1784.2005
- Chung, N. and S. D. Aust. 1995. Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch. Biochem. Biophys. 316: 733-737 https://doi.org/10.1006/abbi.1995.1097
- Couto, S. R. and M. A. Sanroman. 2005. Application of solidstate fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22: 211-219 https://doi.org/10.1016/j.bej.2004.09.013
- Cuesta, G., N. Suarez, M. I. Bessio, F. Ferreira, and H. Massaldi. 2003. Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenolsulfuric acid method. J. Microbiol. Meth. 52: 69-73 https://doi.org/10.1016/S0167-7012(02)00151-3
- Erkurt, E. A., A. U. Nyayar, and H. Kumbur. 2007. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem. 42: 1429-1435 https://doi.org/10.1016/j.procbio.2007.07.011
- Fu, Y. Z. and T. Vrraraghavan. 2001. Fungal decolorization of dye wasters: A review. Bioresource Technol. 79: 251-262 https://doi.org/10.1016/S0960-8524(01)00028-1
- Gao, J. M., H. B. Weng, D. H. Zhu, M. X. Yuan, F. X. Guan, and Y. Xi. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of com stover. Bioresource Technol. 99: 7623-7629 https://doi.org/10.1016/j.biortech.2008.02.005
- Gianfreda, L., F. Xu, and J. M. Bollag. 1999. Laccases. A useful group of oxidoreductive enzymes. Biorem. J. 3: 1-25 https://doi.org/10.1080/10889869991219163
- Giovana, K. T., Z. Adriana, G. M. S. Cristina, and M. P. Rosane. 2004. Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem. 39: 855-859 https://doi.org/10.1016/S0032-9592(03)00194-8
- Johannes, C., A. Majcherczyk, and A. Huetterrnann. 1998. Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotechnol. 61: 151-156 https://doi.org/10.1016/S0168-1656(98)00030-3
- Kapich, A. N., B. A. Prior, A. Botha, S. Galkin, T. Lundell, and A. Hatakka. 2004. Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb. Tech. 34: 187-195 https://doi.org/10.1016/j.enzmictec.2003.10.004
- Laura, L., H. Claudia, and L. P. Victor. 2008. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207-214 https://doi.org/10.1016/j.bej.2007.09.004
- Lowri, S. D., A. P. Gracia, and W D. Gregory. 2008. Comparison of headspace-SPME-GC-MS and LC-MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chem. 107: 1701-1709 https://doi.org/10.1016/j.foodchem.2007.09.070
- Membrillo, I., C. Sanchez, M. Meneses, E. Favela, and O. Loera. 2008. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technol. 99: 7842-7847 https://doi.org/10.1016/j.biortech.2008.01.083
- Moreira, M. T., G. Feijoo, and J. M. Lema. 2000. Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol. Lett. 22: 1499-1503 https://doi.org/10.1023/A:1005606330152
- Niladevi, K. N. and P. Prema. 2008. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technol. 99: 4583-4589 https://doi.org/10.1016/j.biortech.2007.06.056
- Nilsson, I., A. Moller, B. Mattiasson, M. S. T. Rubindamayugi, and U. Welander. 2006. Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Tech. 38: 94-100 https://doi.org/10.1016/j.enzmictec.2005.04.020
- Nyanhongo, G. S., J. Gomes, G. M. Giibitz, R. Zvauya, J. Read, and W Steiner. 2002. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 36: 1449-1456 https://doi.org/10.1016/S0043-1354(01)00365-7
- Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77: 247-255 https://doi.org/10.1016/S0960-8524(00)00080-8
- Robinson, T., B. Chandran, and P. Nigam. 2005. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Tech. 36: 17-24 https://doi.org/10.1016/j.enzmictec.2004.03.026
- Ryan, D., W. Leukes, and S. Burton. 2007. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresource Technol. 98: 579-587 https://doi.org/10.1016/j.biortech.2006.02.001
- Seeram, N. P., R. Lee, S. H. Scheuller, and D. Heber. 2006. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 97: 1-11 https://doi.org/10.1016/j.foodchem.2005.02.047
- Sual, T. B., S. Carmen, L. Octavio, D. R. Geroffrey, and D. G Gerardo. 2008. Laccase of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: Production of a nove11accase isoform. Mycolog. Res. 112: 1080-1084 https://doi.org/10.1016/j.mycres.2008.03.001
- Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187 https://doi.org/10.1016/j.biotechadv.2003.08.011
- Xua, F. X., D. E. Kochb, I. C. Kongc, R. P. Hunterb, and A. Bhandaria. 2005. Peroxidase-mediated oxidative coupling of 1-naphthol: Characterization of polymerization products. Water Res. 39: 2358-2368 https://doi.org/10.1016/j.watres.2005.04.010
- Zhou, J. Y., F. Q. Zhang, and M. Kuwahara. 1994. Study on the Mn-peroxidase and laccase from fungus II: The Mn-peroxidase produced by a basidiomycete, Pycnoporus sanguineus K-2352. Microbiology 2: 152-156
- Zohar, K., F. Dana, and H. Yitzhak. 1992. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 1121-1127
Cited by
- Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger vol.11, pp.None, 2009, https://doi.org/10.1186/1475-2859-11-165
- Efficiency of Pleurotus florida Laccase on Decolorization and Detoxification of the Reactive Dye Remazol Brilliant Blue R (RBBR) under Optimized Conditions vol.41, pp.7, 2009, https://doi.org/10.1002/clen.201100521
- Biochemical and Biophysical Response to Calcium Chloride Stress in Aspergillus niger and its Role in Malachite Green Degradation vol.65, pp.3, 2009, https://doi.org/10.1007/s12013-012-9444-0
- Novel Microemulsion of Tanshinone IIA, Isolated from Salvia miltiorrhiza Bunge, Exerts Anticancer Activity Through Inducing Apoptosis in Hepatoma Cells vol.41, pp.1, 2009, https://doi.org/10.1142/s0192415x13500146
- Engineering the Expression and Characterization of Two Novel Laccase Isoenzymes from Coprinus comatus in Pichia pastori s by Fusing an Additional Ten Amino Acids Tag at N-Terminus vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pone.0093912
- Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin vol.9, pp.10, 2009, https://doi.org/10.1371/journal.pone.0109786
- 곰팡이를 이용한 염료의 탈색 및 생분해 vol.30, pp.5, 2009, https://doi.org/10.7841/ksbbj.2015.30.5.203
- Cloning, Overexpression, and Characterization of a Thermostable, Organic Solvent-Tolerant Laccase from Bacillus pumilus ARA and Its Application to Dye Decolorization vol.6, pp.14, 2009, https://doi.org/10.1021/acsomega.1c00370