DOI QR코드

DOI QR Code

Bioprocess of Triphenylmethane Dyes Decolorization by Pleurotus ostreatus BP Under Solid-State Cultivation

  • Yan, Keliang (College of Life Science and Technology, Huazhong University of Science and Technology) ;
  • Wang, Hongxun (College of Food Science and Technology, Wuhan Polytechnic University) ;
  • Zhang, Xiaoyu (College of Life Science and Technology, Huazhong University of Science and Technology) ;
  • Yu, Hongbo (College of Life Science and Technology, Huazhong University of Science and Technology)
  • Published : 2009.11.30

Abstract

With an aim to evaluate dye decolorization by white rot fungus on natural living conditions, reproducing by solid-state fermentation, the process of triphenylmethane dyes decolorization using the white rot fungus P. ostreatus BP, cultivated on rice straw solid-state medium, has been demonstrated. Three typical dyes, including malachite green, bromophenol blue, and crystal violet, were almost completely decolorized by the fungus after 9 days of incubation. During the process of dye decolorization, the activities of enzyme secreted by the fungus, and the contents of soluble components, such as phenolic compounds, protein, and sugar, changed regularly. The fungus could produce ligninolytic, cellulolytic, and hemicellulolytic enzymes and laccase was the most dominant enzyme in solid-state medium. Laccase, laccase isoenzyme, and the laccase mediator could explain the decolorization of malachite green, bromophenol blue, and crystal violet by the fungus in solid-state medium, respectively. It is worth noting that the presence of the water-soluble phenolic compounds could stimulate the growth of fungus, enhance the production of laccase, and accelerate dye decolorization.

Keywords

References

  1. Andrea, C., G. Carlo, and G. Patrizia. 2008. Phenolic compounds as likely natural mediators of laccase: A mechanistic assessment. J. Mol. Cataly. B Enzym. 51: 118-120 https://doi.org/10.1016/j.molcatb.2007.11.023
  2. Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye Azure B. Appl. Environ. Microbiol. 58: 3110-3116
  3. Ardon, O., Z. Kerem, and Y. Hadar. 1996. Enhancement of lactase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatusby cotton stalk extract. J. Biotechnol. 51: 201-207 https://doi.org/10.1016/S0168-1656(96)01597-0
  4. Azmi, W., R. K. Sani, and U. C. Banerjee. 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Tech. 22: 185-191 https://doi.org/10.1016/S0141-0229(97)00159-2
  5. Bajpai, P. 2004. Biological bleaching of chemical pulps. Crit. Rev. Biotechnol. 24: 1-58 https://doi.org/10.1080/07388550490465817
  6. Baldrian, P. and J. Gabriel. 2003. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol. Lett. 220: 235-240 https://doi.org/10.1016/S0378-1097(03)00102-2
  7. Box, J. D. 1983. Investigation of the Folin Ciocalteu's reagent for determination of polyphenolic substances in natural waters. Water Res. 17: 501-525 https://doi.org/10.1016/0043-1354(83)90110-0
  8. Camarero, S., D. Ibarra, M. J. Martnez, and A. T. Martnez. 2005. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol. 71: 1775-1784 https://doi.org/10.1128/AEM.71.4.1775-1784.2005
  9. Chung, N. and S. D. Aust. 1995. Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch. Biochem. Biophys. 316: 733-737 https://doi.org/10.1006/abbi.1995.1097
  10. Couto, S. R. and M. A. Sanroman. 2005. Application of solidstate fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22: 211-219 https://doi.org/10.1016/j.bej.2004.09.013
  11. Cuesta, G., N. Suarez, M. I. Bessio, F. Ferreira, and H. Massaldi. 2003. Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenolsulfuric acid method. J. Microbiol. Meth. 52: 69-73 https://doi.org/10.1016/S0167-7012(02)00151-3
  12. Erkurt, E. A., A. U. Nyayar, and H. Kumbur. 2007. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem. 42: 1429-1435 https://doi.org/10.1016/j.procbio.2007.07.011
  13. Fu, Y. Z. and T. Vrraraghavan. 2001. Fungal decolorization of dye wasters: A review. Bioresource Technol. 79: 251-262 https://doi.org/10.1016/S0960-8524(01)00028-1
  14. Gao, J. M., H. B. Weng, D. H. Zhu, M. X. Yuan, F. X. Guan, and Y. Xi. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of com stover. Bioresource Technol. 99: 7623-7629 https://doi.org/10.1016/j.biortech.2008.02.005
  15. Gianfreda, L., F. Xu, and J. M. Bollag. 1999. Laccases. A useful group of oxidoreductive enzymes. Biorem. J. 3: 1-25 https://doi.org/10.1080/10889869991219163
  16. Giovana, K. T., Z. Adriana, G. M. S. Cristina, and M. P. Rosane. 2004. Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem. 39: 855-859 https://doi.org/10.1016/S0032-9592(03)00194-8
  17. Johannes, C., A. Majcherczyk, and A. Huetterrnann. 1998. Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J. Biotechnol. 61: 151-156 https://doi.org/10.1016/S0168-1656(98)00030-3
  18. Kapich, A. N., B. A. Prior, A. Botha, S. Galkin, T. Lundell, and A. Hatakka. 2004. Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb. Tech. 34: 187-195 https://doi.org/10.1016/j.enzmictec.2003.10.004
  19. Laura, L., H. Claudia, and L. P. Victor. 2008. Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207-214 https://doi.org/10.1016/j.bej.2007.09.004
  20. Lowri, S. D., A. P. Gracia, and W D. Gregory. 2008. Comparison of headspace-SPME-GC-MS and LC-MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chem. 107: 1701-1709 https://doi.org/10.1016/j.foodchem.2007.09.070
  21. Membrillo, I., C. Sanchez, M. Meneses, E. Favela, and O. Loera. 2008. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresource Technol. 99: 7842-7847 https://doi.org/10.1016/j.biortech.2008.01.083
  22. Moreira, M. T., G. Feijoo, and J. M. Lema. 2000. Evaluation of different fungal strains in the decolourisation of synthetic dyes. Biotechnol. Lett. 22: 1499-1503 https://doi.org/10.1023/A:1005606330152
  23. Niladevi, K. N. and P. Prema. 2008. Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technol. 99: 4583-4589 https://doi.org/10.1016/j.biortech.2007.06.056
  24. Nilsson, I., A. Moller, B. Mattiasson, M. S. T. Rubindamayugi, and U. Welander. 2006. Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Tech. 38: 94-100 https://doi.org/10.1016/j.enzmictec.2005.04.020
  25. Nyanhongo, G. S., J. Gomes, G. M. Giibitz, R. Zvauya, J. Read, and W Steiner. 2002. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 36: 1449-1456 https://doi.org/10.1016/S0043-1354(01)00365-7
  26. Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77: 247-255 https://doi.org/10.1016/S0960-8524(00)00080-8
  27. Robinson, T., B. Chandran, and P. Nigam. 2005. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb. Tech. 36: 17-24 https://doi.org/10.1016/j.enzmictec.2004.03.026
  28. Ryan, D., W. Leukes, and S. Burton. 2007. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresource Technol. 98: 579-587 https://doi.org/10.1016/j.biortech.2006.02.001
  29. Seeram, N. P., R. Lee, S. H. Scheuller, and D. Heber. 2006. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 97: 1-11 https://doi.org/10.1016/j.foodchem.2005.02.047
  30. Sual, T. B., S. Carmen, L. Octavio, D. R. Geroffrey, and D. G Gerardo. 2008. Laccase of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: Production of a nove11accase isoform. Mycolog. Res. 112: 1080-1084 https://doi.org/10.1016/j.mycres.2008.03.001
  31. Wesenberg, D., I. Kyriakides, and S. N. Agathos. 2003. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187 https://doi.org/10.1016/j.biotechadv.2003.08.011
  32. Xua, F. X., D. E. Kochb, I. C. Kongc, R. P. Hunterb, and A. Bhandaria. 2005. Peroxidase-mediated oxidative coupling of 1-naphthol: Characterization of polymerization products. Water Res. 39: 2358-2368 https://doi.org/10.1016/j.watres.2005.04.010
  33. Zhou, J. Y., F. Q. Zhang, and M. Kuwahara. 1994. Study on the Mn-peroxidase and laccase from fungus II: The Mn-peroxidase produced by a basidiomycete, Pycnoporus sanguineus K-2352. Microbiology 2: 152-156
  34. Zohar, K., F. Dana, and H. Yitzhak. 1992. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 1121-1127

Cited by

  1. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger vol.11, pp.None, 2009, https://doi.org/10.1186/1475-2859-11-165
  2. Efficiency of Pleurotus florida Laccase on Decolorization and Detoxification of the Reactive Dye Remazol Brilliant Blue R (RBBR) under Optimized Conditions vol.41, pp.7, 2009, https://doi.org/10.1002/clen.201100521
  3. Biochemical and Biophysical Response to Calcium Chloride Stress in Aspergillus niger and its Role in Malachite Green Degradation vol.65, pp.3, 2009, https://doi.org/10.1007/s12013-012-9444-0
  4. Novel Microemulsion of Tanshinone IIA, Isolated from Salvia miltiorrhiza Bunge, Exerts Anticancer Activity Through Inducing Apoptosis in Hepatoma Cells vol.41, pp.1, 2009, https://doi.org/10.1142/s0192415x13500146
  5. Engineering the Expression and Characterization of Two Novel Laccase Isoenzymes from Coprinus comatus in Pichia pastori s by Fusing an Additional Ten Amino Acids Tag at N-Terminus vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pone.0093912
  6. Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin vol.9, pp.10, 2009, https://doi.org/10.1371/journal.pone.0109786
  7. 곰팡이를 이용한 염료의 탈색 및 생분해 vol.30, pp.5, 2009, https://doi.org/10.7841/ksbbj.2015.30.5.203
  8. Cloning, Overexpression, and Characterization of a Thermostable, Organic Solvent-Tolerant Laccase from Bacillus pumilus ARA and Its Application to Dye Decolorization vol.6, pp.14, 2009, https://doi.org/10.1021/acsomega.1c00370