DOI QR코드

DOI QR Code

Effect of Recombinant Lactobacillus Expressing Canine GM-CSF on Immune Function in Dogs

  • Chung, Jin-Young (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Sung, Eui-Jae (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Cho, Chun-Gyu (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Seo, Kyoung-Won (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Jong-Soo (Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California) ;
  • Bhang, Dong-Ha (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Hee-Woo (Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Hwang, Cheol-Yong (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Wan-Kyu (Laboratory of Infectious Disease, College of Veterinary Medicine, Chungbuk National University) ;
  • Youn, Hwa-Young (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Chul-Joong (Laboratory of Infectious Disease, College of Veterinary Medicine, Chungnam National University)
  • Published : 2009.11.30

Abstract

Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either $1\times10^9$ colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGM-CSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies.

Keywords

References

  1. Amitage, J. O. 1998. Emerging applications of recombinant human granulocyte-macrophage colony-stimulation factor. Blood 92: 4491-4508
  2. Ashiuchi, M., C. Nawa, T. Kamei, J. J. Song, S. P. Hong, M. H. Sung, K. Soda, and H. Misono. 2001. Physiological and biochemical characteristics of poly-y-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321-5328 https://doi.org/10.1046/j.0014-2956.2001.02475.x
  3. Ashiuchi, M., K. Soda, and H. Misono. 1999. A poly-$\gamma$-glutamate synthetic system of Bacillus subtilis IFO 3336: Gene cloning and biochemical analysis of poly-$\gamma$-glutamate produced by Escherichia coli clone cells. Biochem. Biophys. Res. Commun. 263: 6-12 https://doi.org/10.1006/bbrc.1999.1298
  4. Benson, E. B. and W. Strober. 1988. Regulation of IgA secretion by T cell clones derived from the human gastrointestinal tract. J. Immunol. 140: 1874-1882
  5. Bermudez-Humaran, L. G.., N. G. Cortes-Perez, Y. Le Loir, J. M. Alcocer-Gonzalez, R. S. Tamez-Guerra, R. M. de Oca-Luna, and P. Langella. 2004. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J. Med. Microbiol. 53: 427-433 https://doi.org/10.1099/jmm.0.05472-0
  6. Borrello, I. and D. Pardoll. 2002. GM-CSF-based cellular vaccines: A review of the clinical experience. Cytokine Growth Factor Rev. 13: 185-193 https://doi.org/10.1016/S1359-6101(01)00034-X
  7. Christensen, H. R., H. Frokiaer, and J. J. Pestka. 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168: 171-178
  8. Cortes-Perez, N. G., V. Azevedo, J. M. Alcocer-Gonzalez, C. Rodriguez-Padilla, R. S. Tamez-Guerra, G. Corthier, A. Gruss, P. Langella, and L. G. Bermudez-Humaran. 2005. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J. Drug Target. 13: 89-98 https://doi.org/10.1080/10611860400024219
  9. Cortes-Perez, N. G., L. G. Bermudez-Humaran, Y. Le Loir, C. Rodriguez-Padilla, A. Gruss, O. Saucedo-Cardenas, P. Langella, and R. Montes-de Oca-Luna. 2003. Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol. Lett. 229: 37-42 https://doi.org/10.1016/S0378-1097(03)00778-X
  10. Fleischmann, J., D. W. Golde, R. H. Weisbart, and J. C. Gasson. 1986. Granulocyte-macrophage colony-stimulating factor enhances phagocytosis of bacteria by human neutrophils. Blood 68: 708-711
  11. Gerritse, K., M. Posno, M. M. Schellekens, W. J. Boersma, and E. Claassen. 1990. Oral administration of TNP-Lactobacillus conjugates in mice: A model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res. Microbiol. 141: 955-962 https://doi.org/10.1016/0923-2508(90)90135-D
  12. Gorbach, S. L. 1990. Lactic acid bacteria and human health. Ann. Med. 22: 37-41 https://doi.org/10.3109/07853899009147239
  13. Hammond, W. P., E. Csiba, A. Canin, H. Hockman, L. M. Souza, J. E. Layton, and D. C. Dale. 1991. Chronic neutropenia. A new canine model induced by human granulocyte colonystimulating factor. J. Clin. Invest. 87: 704-710 https://doi.org/10.1172/JCI115049
  14. Herbst, B., G. Kohler, A. Mackensen, H. Veelken, and A. Lindemann. 1998. GM-CSF promotes differentiationof a precursor cell of monocytes and Langerhans-type dendritic cells from CD34+ haematopoietic progenitor cells. Br. J. Haematol. 101: 231-241 https://doi.org/10.1046/j.1365-2141.1998.00685.x
  15. Jeong, K. J., J. H. Choi, W. M. Yoo, K. C. Keum, N. C. Yoo, S. Y. Lee, and M. H. Sung. 2004. Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr. and Purif. 36: 150-156 https://doi.org/10.1016/j.pep.2004.04.007
  16. Johnson-Henry, K. C., D. J. Mitchell, Y. Avitzur, E. Galindo-Mata, N. L. Jones, and P. M. Sherman. 2004. Probiotics reduce bacterial colonization and gastric inflammation in H. pyloriinfected mice. Dig. Dis. Sci. 49: 1095-1102 https://doi.org/10.1023/B:DDAS.0000037794.02040.c2
  17. Kraehenbuhl, J. P. and M. R. Neutra. 1992. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 72: 853-879
  18. Maassen, C. B., W. J. Boersma, C. van Holten-Neelen, E. Claassen, and J. D. Laman. 2003. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: Implications for vaccine development. Vaccine 21: 2751-2757 https://doi.org/10.1016/S0264-410X(03)00220-2
  19. Makino, S., I. Uchida, N. Terakado, C. Sasakawa, and M. Yoshikawa. 1989. Molecular characerization and protein analysis of the cap region which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 171: 722-730
  20. Maliszewski, C. R., M. A. Schoenborn, D. P. Cerretti, J. M. Wignall, K. S. Picha, D. Cosman, R. J. Tushinski, S. Gillis, and P. E. Baker. 1988. Bovine GM-CSF: Molecular cloning and biological activity of the recombinant protein. Mol. Immunol. 25: 843-850 https://doi.org/10.1016/0161-5890(88)90120-4
  21. Metcalf, D. 1986. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factor. Blood 67: 257-267
  22. Metcalf, D., A. W. Burgess, G. R. Johnson, N. A. Nicola, E. C. Nice, J. DeLamarter, D. R. Thatcher, and J. J. Mermod. 1986. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: Comparison with purified native GM-CSF. J. Cell. Physiol. 128: 421-431 https://doi.org/10.1002/jcp.1041280311
  23. Morrissey, P. J., L. Bressler, L. S. Park, A. Alpert, and S. Gillis. 1987. Granulocyte-macrophage colony-stimulating factor augments the primary antibody response by enhancing the function of antigen-presenting cells. J. Immunol. 139: 1113-1119
  24. Nathan, C. 1989. Respiratory burst in adherent human neutrophils. Triggering by colony-stimulating factors CSF-GM and CSF-G. Blood 73: 301-306
  25. Poo, H., H. M. Pyo, T. Y. Lee, S. W. Yoon, J. S. Lee, C. J. Kim, M. H. Sung, and S. H. Lee. 2006. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int. J. Cancer 119: 1702-1709 https://doi.org/10.1002/ijc.22035
  26. Pouwels, P. H., R. J. Leer, and W. J. Boersma. 1996. The potential of Lactobacillus as a carrier for oral immunization: Development and preliminary characterization of vector systems for targeted delivery of antigens. J. Biotechnol. 44: 183-192 https://doi.org/10.1016/0168-1656(95)00140-9
  27. Robinson, B. E., H. E. McGrath, and P. J. Quesenberry. 1987. Recombinant murine granulocyte-macrophage colony-stimulating factor has megakaryocyte colony stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. J. Clin. Invest. 79: 1648-1652 https://doi.org/10.1172/JCI113002
  28. Schuening, F. G., R. Storb, S. Goehle, R. Nash, T. C. Graham, F. R. Appelbaum, R. Hackman, B. M. Sandmaier, and D. L. Urdal. 1989. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp. Hematol. 17: 889-894
  29. Seegers, J. F. 2002. Lactobacilli as live vaccine delivery vectors: Progress and prospects. Trends Biotechnol. 20: 508-515 https://doi.org/10.1016/S0167-7799(02)02075-9
  30. Strober, W. 1990. Regulation of IgA B-cell development in the mucosal immune system. J. Clin. Immunol. 10: 56S-61S https://doi.org/10.1007/BF00918692
  31. Villalta, F. and F. Kierszenbaum. 1986. Effects of human colony-stimulating factor on the uptake and destruction of a pathogenic parasite (Trypanosoma cruzi) by human neutrophils. J. Immunol. 137: 1703-1707
  32. Wang, J. M., S. Colella, P. Allavena, and A. Mantovani. 1987. Chemotactic activity of hunran recombinant granulocyte-macrophage colony-stimulating factor. Immunology 60: 439-444
  33. Warren, T. L. and G. J. Weiner. 2000. Uses of granulocytemacrophage colony-stimulating factor in vaccine development. Curr. Opin. Hematol. 7: 168-173 https://doi.org/10.1097/00062752-200005000-00007
  34. Weisbart, R. H., L. Kwan, D. W. Golde, and J. C. Gasson. 1987. Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood 69: 18-21

Cited by

  1. Understanding the canine intestinal microbiota and its modification by pro‐, pre‐ and synbiotics – what is the evidence? vol.2, pp.2, 2009, https://doi.org/10.1002/vms3.17