Recognition of License Plates Using a Hybrid Statistical Feature Model and Neural Networks

하이브리드 통계적 특징 모델과 신경망을 이용한 자동차 번호판 인식

  • 유신 (인천대학교 정보통신공학과) ;
  • 정병준 ((주)로봇에버 HRI Lab) ;
  • 강현철 (인천대학교 정보통신공학과)
  • Published : 2009.12.15

Abstract

A license plate recognition system consists of image processing in which characters and features are extracted, and pattern recognition in which extracted characters are classified. Feature extraction plays an important role in not only the level of data reduction but also performance of recognition. Thus, in this paper, we focused on the recognition of numeral characters especially on the feature extraction of numeral characters which has much effect in the result of plate recognition. We suggest a hybrid statistical feature model which assures the best dispersion of input data by reassignment of clustering property of input data. And we verify the effectiveness of suggested model using multi-layer perceptron and learning vector quantization neural networks. The results show that the proposed feature extraction method preserves the information of a license plate well and also is robust and effective for even noisy and external environment.

자동차 번호판 인식 시스템은 문자 추출, 특징 추출 등의 영상처리와 추출된 문자를 인식하는 인식기로 구성된다. 특징 추출은 문자 영역의 데이터 감소뿐만 아니라 인식 성능을 결정한다. 따라서 본 논문에서는 번호판 인식의 결과에 영향이 큰 숫자 인식, 특히 숫자의 특징 추출에 초점을 두었으며, 데이터의 군집성을 재배치하여 데이터 간의 최적의 산란도를 확보할 수 있는 통계적 특징의 혼합 모델을 제안하고, 이를 다층 퍼셉트론과 LVQ 신경망을 이용하여 유효성을 검증하였다. 제안된 통계적 특징 추출 방법은 번호판 영상이 갖는 정보를 가장 잘 유지하고, 잡음과 외부 환경에 강건하며 효과적인 방법임을 보여준다.

Keywords

References

  1. K. Park, H. Kang, W. Lee, 'Recognition of Numerical Charaters in License Plates using Eigennumbers,' Journal of the IEEK, vol.44 SP, no.3, pp.266-273, 2007. (in Korean)
  2. J. Karhunen and J. Joutsensalo, 'Generation of Principal Component Analysis, Optimization Problems, and Neural Networks,' Neural Networks, vol.8, no.4, pp.549-562, 1995 https://doi.org/10.1016/0893-6080(94)00098-7
  3. A. Hyvarinen, 'Fast and Robust Fixed-Point Algorithm for Independent Component Analysis,' IEEE Trans. on Neural Networks, vol.10, no.3, pp. 626-634, 1999 https://doi.org/10.1109/72.761722
  4. H. C. Kim, D. Kim, S. Y. Bang, 'Extensions of LDA by PCA mixture model and class-wise features,' Journal of KIISE : Software and Applications, vol.32, no.8, pp.781-788, 2005
  5. K. C. Kwak and W. Pedrycz, 'Face Recognition Using an Enhanced Independent Component Analysis Approach,' IEEE Trans. on Neural Networks, vol.18, no.2, March 2007
  6. B. J. Jeong and H. Kang, 'Recognition of Numeric Characters in License Plate Based on Independent Component Analysis,' Journal of the IEEK, vol.46 SP, no.2, pp.99-107, 2009.3. (in Korean)
  7. T. Kohonen, J. Hunninen, J. Kangas, J. Kaaksonen, and K. Torkkola, 'LVQ_ PAK: The Learning Vector Quantization Program Package,' Technical Report A30, Helsinki Univ. 1996
  8. A. K. Rigler, J. M. Irvine and T. P. Vogl, 'Rescaling of variables in back propagation learning,' Neural Networks, vol.3, no.5, pp.461-573, 1990