CT 혈관 조영 영상에서 뼈 소거법 기반의 하지 혈관 자동 추출

Automatic Lower Extremity Vessel Extraction based on Bone Elimination Technique in CT Angiography Images

  • 김수경 (서울여자대학교 컴퓨터학과) ;
  • 홍헬렌 (서울여자대학교 미디어학부)
  • 발행 : 2009.12.15

초록

본 논문에서는 CT 및 CT 혈관 조영 영상에서 강체 정합 및 뼈 소거법을 이용한 하지 혈관 자동 추출 방법을 제안한다. 첫째, 뼈의 부분적인 움직임을 반영하기 위하여 해부학 정보를 바탕으로 하지를 자동 구역화하고, 둘째, CT와 CTA 영상간 움직임을 산정하기 위하여 거리지도 기반의 강체 정합을 수행한다. 셋째, CTA 영상에서 복잡한 구조를 갖는 뼈를 제거하고 뼈에 인접한 혈관이 깎이는 것을 방지하기 위하여 뼈 소거법과 혈관 마스킹 기법을 제안한다. 넷째, 정합오차 및 연골 등의 잡음을 줄이기 위하여 혈관 추적 기반의 후 처리 과정을 통하여 보정한다. 제안 방법의 평가를 위해 육안 평가와 정확성 평가 그리고 수행시간을 측정하였다. 육안 평가를 위해 차감 기법, 정합 후 차감 기법, 제안 방법을 적용한 결과를 볼륨렌더링과 최대 강도 투영영상을 사용하여 비교하였다. 정확성 평가를 위해 CTA 영상과 차감 기반 기법 및 제안 방법을 적용한 결과의 밝기값 분포도를 분석하였다. 실험 결과 뼈는 제거되고 가는 혈관 및 다른 조직의 손실 없이 혈관이 정확하게 추출되었음을 볼 수 있었고, 13명의 환자 데이터 전채에 대한 전체 수행시간은 약 40포 정도로 측정되었다.

In this paper, we propose an automatic lower extremity vessel extraction based on rigid registration and bone elimination techniques in CT and CT angiography images. First, automatic partitioning of the lower extremity based on the anatomy is proposed to consider the local movement of the bone. Second, rigid registration based on distance map is performed to estimate the movement of the bone between CT and CT angiography images. Third, bone elimination and vessel masking techniques are proposed to remove bones in CT angiography image and to prevent the vessel near to bone from eroding. Fourth, post-processing based on vessel tracking is proposed to reduce the effect of misalignment and noises like a cartilage. For the evaluation of our method, we performed the visual inspection, accuracy measures and processing time. For visual inspection, the results of applying general subtraction, registered subtraction and proposed method are compared using volume rendering and maximum intensity projection. For accuracy evaluation, intensity distributions of CT angiography image, subtraction based method and proposed method are analyzed. Experimental result shows that bones are accurately eliminated and vessels are robustly extracted without the loss of other structure. The total processing time of thirteen patient datasets was 40 seconds on average.

키워드

참고문헌

  1. P. Poletti, A. Rosset, D. Didier, P. Bachmann et al., 'Subtraction CT Angiography of the Lower Limbs: A New Technique for the Evaluation of Acute Arterial Occlusion,' American Journal of Radiology, vol.183, pp.1445-1448, 2004
  2. G.D. Rubin, M.D. Dake, S.A. Napel, 'Threedimensional Spiral CT Angiography of the Abdomen: Initial Clinical Experience,' RSNA 1993, vol.186, pp.147-152, 1993
  3. Geoffrey D. Rubin, Dominik Fleischmann, 'CT angiography of the lower extremities,' Applied Radiology Journal, vol.33, no.7, pp.48-58, 2004
  4. P. Felkel, R. Wegenkittl, 'Vessel Tracking in Peripheral CTA Datasets an Overview,' Spring Conference on Computer Graphics (SCCG), 2001 https://doi.org/10.1109/SCCG.2001.945359
  5. P.Felkel, 'Segmentation of vessel in peripheral CTA Datasets,' VRVis Center Technical Report TR-VRVis-2000-2008, Dec, 2000
  6. M. Straka, M. Cervenansky, A. L. Cruz, A. Kochl, M. Sramek, M. E. Groller, and D. Fleischmann, 'The VesselGlyph:Focus&Context Visualization in CT-Angiography,' In Proceedings of IEEE Visualization 2004, pp.385-392, 2004 https://doi.org/10.1109/VIS.2004.104
  7. T. Boskamp, D. Rinck, B. Kummerlen, 'New Vessle Analysis Tool for Morphometric Quantification and Visualization of Vessels in CT and MR Imaging Data Sets,' Radio Graphics, vol.24 pp.287-297, 2004 https://doi.org/10.1148/rg.241035073
  8. S. Eiho, H. Sekiguchi, N. Sugimoto, T. Hanakawa, S.Urayama 'Branch-Based Region Growing Method for Blood Vessel Segmentation,' ISPRS '04, pp.796-801, 2004
  9. T. Beck, C. Biermann, D. Fritz, R. Dillmann, 'Robust model-based centerline extraction of vessels in CTA data,' Proc. of SPIE, vol.7259, 2009 https://doi.org/10.1117/12.810753
  10. D. Maksimov, F. Finkel, T. Dietz, S. Diehl, C. Duber, P. Rebholz, J. Hesser, R.Manner, 'An Interactive Application for Removal of Bone Information in CT-Angiography,' Proc. of the 17th IEEE Symposium on Computer-Based Medical Systems(CBMS'04), p.396, 2004 https://doi.org/10.1109/CBMS.2004.1311746
  11. B.F. Tomandl, T. Hammen, E. Klotz, H. Ditt, B. Stemper, M. Lell, 'Evaluation of an improved technique for lumen path definition and lumen segmentation of atherosclerotic vessel in CT angiography,' European Radiology, vol.17, no.7, pp.1738-1745, 2007 https://doi.org/10.1007/s00330-006-0469-x
  12. S.M. Kwon, T.S.Kim, T.Kim, J.B.Ra., 'Novel digital subtracton CT angiography based on 3D registration and refinement,' Proc. of SPIE Medical Image: Image Processing, 2004 https://doi.org/10.1016/j.compmedimag.2004.06.003
  13. H. Hong, H. Lee, S.Yeong-Gil, 'Cerebral vessel visualization by patient motion correction in threedimensional CT angiography,' Proc. of SPIE, vol.5744, pp.529-537, 2005 https://doi.org/10.1117/12.593613
  14. D.G. Heath, H.K. Hahn, P.T. Johnson, E.K. Fishman, 'Automated Multidetector Row CT Dataset Segmentation with an Interactive Watershed Transform (IWT) Algorithm,' Journal of Digital Imaging, 2007
  15. Y.Lee, D.Y. Tsai, S.Inomata, R.Yokoyama, T.Hara, H.Fujita, M.Kanematsu, T.Iwama, and H.Hoshi, 'An Automated Bone Removal Technique for Extraction of Cerebral Vessels from Head CT Angiography,' Biomedical Engineering, 2005
  16. F.H. Netter, MD, 'Atlas of Human Anatomy,' pp. 485-580, Elsevier, 2006
  17. S. Drisisa, S. Srivastavab, D. Seghersb, W. Coudyzera, 'Subtraction CT angiography using nonrigid registration: The impact of similarity measure and image pre-processing,' Computer Assisted Radiology and Surgery(CARS '05), vol.1281, pp. 328-333, 2005 https://doi.org/10.1016/j.ics.2005.03.180
  18. H. Hong, H. Lee, S.Yeong-Gil, 'Cerebral vessel visualization by patient motion correctionin threedimensional CT angiography,' Proceedings of the SPIE, vol.5744, pp.529-537, 2005 https://doi.org/10.1117/12.593613
  19. N. Wang, J. Tang, Y. Zheng, R. Dong, 'An Algorithm for Point Correspondences Based on Laplacian Spectra of Graphs,' International Conference on Computational Intelligence and Security, vol.1, pp.684-689, 2006
  20. Snyman J. A., 'Practical Mathematical Optimization (An Introduction To Basic Optimization Theory and Classical And New Gradient-Based Algorithms),' Springer Verlag, p.38, 2006