S-파라미터 측정을 통한 MOSFET 캐리어 속도의 고온 종속 SPICE 모델링

High Temperature Dependent SPICE Modeling for Carrier Velocity in MOSFETs Using Measured S-Parameters

  • 정대현 (한국외국어대학교 전자정보공학부) ;
  • 고봉혁 (한국외국어대학교 전자정보공학부) ;
  • 이성현 (한국외국어대학교 전자정보공학부)
  • Jung, Dae-Hyoun (School of Electronics and Information Engineering, Hankuk University of Foreign Studies) ;
  • Ko, Bong-Hyuk (School of Electronics and Information Engineering, Hankuk University of Foreign Studies) ;
  • Lee, Seong-Hearn (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
  • 발행 : 2009.12.25

초록

$0.18{\mu}m$ deep n-well 벌크 NMOSFET에서 측정된 차단주파수 $f_T$의 고온종속성을 모델화하기 위해, 측정된 S-파라미터를 사용한 정확한 RF 방법으로 $30^{\circ}C$에서 $250^{\circ}C$까지 전자속도 고온 데이터가 추출되었다. 이러한 추출데이터를 사용하여 개선된 온도종속 전자속도 방정식이 높은 온도의 범위에서 생기는 기존 방정식의 모델링 오차를 없애기 위해 개발되었으며 BSIM3v3 SPICE RF 모델에 구현되었다. 개선된 온도 종속 방정식은 기존 모델보다 $30^{\circ}C$에서 $250^{\circ}C$까지 측정된 $f_T$와 더 잘 일치하였으며, 이는 개선된 방정식의 정확성을 입증한다.

In order to model the high temperature dependence of the cutoff frequency $f_T$ in $0.18{\mu}m$ deep n-well isolated bulk NMOSFET, high temperature data of electron velocity of bulk MOSFETs from $30^{\circ}C$ to $250^{\circ}C$ are obtained by an accurate RF extraction method using measured S-parameters. From these data, an improved temperature-dependent electron velocity equation is developed and implemented in a BSIM3v3 SPICE model to eliminate modeling error of a conventional one in the high temperature range. Better agreement with measured $f_T$ data from $30^{\circ}C$ to $250^{\circ}C$ are achieved by using the SPICE model with the improved equation rather than the conventional one, verifying its accuracy of the improved one.

키워드

참고문헌

  1. N. Camilleri, J. Costa, D. Lovelace and D. Ngo, "Silicon MOSFET's the Microwave device technology for the 90s," in IEEE MIT-S Int. Microwave Symp.Dig., pp.545-548, 1993
  2. M. Emam, D. Vanhoenacker-Janvier and J.-P. Raskin, "High temperature DC and RF behavior of partially-depleted SOl versus deep n-well protected bulk MOSFETs," in Proc. IEEE T apical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.1-4, 2009
  3. D. Jung, J. Cha, J. Cha and S. Lee, "High Temperature Data Extraction of Carrier Velocity in MOSFETs Using a RF Measurement Method," in Proc. International Workshop on Next Generation Electronics, pp. 7-8, Nov. 2008
  4. D. Jung, J. Cha, J. Cha and S. Lee, "High Temperature Modeling of Electron Velocity in MOSFETs Using RF Measurement Data," The 16th Korean Conference on Semiconductors, pp. 200-201, Feb. 2009
  5. BSIM3u3 Manual, U. C. Berkely, 1996
  6. D. Jung, B. Ko and S. Lee, "Accurate High Temperature Dependent Modeling of Carrier Velocity m MOSFETs for RF Circuit Simulation," in Proc. International Meeting for Future Electron Devices, Kansai, pp. 128-129, May 2009
  7. J. Cha, J. Cha and S. Lee, "Uncertainty Analysis of Two-Step and Three-Step Methods for Deembedding On-Wafer RF Transistor Measurements," IEEE Trans. Electron Devices, vol.55, pp.2195-2201, Aug. 2008 https://doi.org/10.1109/TED.2008.926752
  8. S. Lee, "A New Method to Extract Carrier Velocity in Sub-0.1-$\mu$m MOSFETs sing RF Measurements," IEEE Trans. Nanotechnology, vol.5, pp.163-166, May 2006 https://doi.org/10.1109/TNANO.2006.869944
  9. S. Lee and H. K. Yu, "Accurate high-frequency equivalent circuit model of silicon MOSFETs," Electronics Letters, vol. 35, pp.1406-1407, Aug. 1999 https://doi.org/10.1049/el:19990980
  10. S. Lee "Accurate RF extraction method for resistances and inductances of sub-0.1-$\mu$m CMOS transistors," Electronics Letters, vo1.41, pp.1325-1327, Nov. 2005
  11. J. Cha, J. Cha and S. Lee, "Scalable RF MOSFET Modeling Considering Wide-Width Effect and Non-Quasi-Static Effect," in Proc. International Meeting for Future Electron Devices, Kansai, pp. 75-76, May 2008