Bio-functions of Marine Carotenoids

  • 발행 : 2009.02.28

초록

Carotenoids being most important pigments among those occurring in nature, have received increased interest owing to their beneficial effects on human health. An effort is made to review marine carotenoids as important bioactive compounds with reference to their presence, chemical, and biofunctional benefits they afford. The potential beneficial effects of marine carotenoids were particularly focused on astaxanthin and fucoxanthin, major marine carotenoids found in marine animals and aquatic plants, respectively. Both carotenoids show strong antioxidant activity which is attributed to quenching singlet oxygen and scavenging free radicals. The potential role of the carotenoids as dietary antioxidants has been suggested as being one of the main mechanism by which they afford their beneficial health effects such as anticancer activity and anti-inflammatory effect. Only recently, antiobesity effect and antidiabetic effect have been noted as specific and novel bio-functions of fucoxanthin. Nutrigenomic study reveals that fucoxanthin induces uncoupling protein 1 (UCP1) expression in white adipose tissue (WAT) mitochondria to lead to oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose level, at least in part, through the down-regulation of tumor necrosis factor $\alpha$ ($TNF{\alpha}$) in WAT of animals.

키워드

참고문헌

  1. Cooper DA, Eldridge AL, Peters JC. Dietary carotenoids and lung cancer: A review of recent research. Nutr. Rev. 57: 133-145 (1999) https://doi.org/10.1111/j.1753-4887.1999.tb01794.x
  2. Cooper DA, Eldridge AL, Peters JC. Dietary carotenoids and certain cancers, heart disease, and age related macular degeneration: A review of recent research. Nutr. Rev. 57: 201-214 (1999) https://doi.org/10.1111/j.1753-4887.1999.tb06944.x
  3. Willett WC. Diet and cancer: One view at the start of the millennium. Cancer Epidem. Biomark. 10: 3-8 (2001)
  4. Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 78: 559S-569S (2003) https://doi.org/10.1093/ajcn/78.3.559S
  5. Edge R, McGarvey DJ, Truscott TG. The carotenoids as antioxidants-a review. J. Photochem. Photobiol. B 41: 189-200 (1997) https://doi.org/10.1016/S1011-1344(97)00092-4
  6. Giovannucci E. Tomatoes, tomato-based products, Iycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer I. 91:317-331 (1999) https://doi.org/10.1093/jnci/91.4.317
  7. Hadley CW, Miller EC, Schwartz SJ, Clinton SK. Tomatoes, lycopene, and prostate cancer: Progress and promise. Exp. BioI. Med. 227: 869-880 (2002) https://doi.org/10.1177/153537020222701006
  8. Tapiero H, Townsend DM, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother. 58: 100-110 (2004) https://doi.org/10.1016/j.biopha.2003.12.006
  9. Chew BP, Park JS. Carotenoid action on the immune response. J. Nutr. 134: 257S-261S (2004) https://doi.org/10.1093/jn/134.1.257S
  10. Palermo JA, Gros EG, Seldes AM. Carotenoids from three red algae of the Corallinaceae. Phytochemistry 30: 2983-2986 (1991) https://doi.org/10.1016/S0031-9422(00)98236-0
  11. Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog. Lipid Res. 46: 328-375 (2007) https://doi.org/10.1016/j.plipres.2007.07.001
  12. Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamura M, Kusumi T. Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater. Mar. Drugs 2: 63-72 (2004) https://doi.org/10.3390/md202063
  13. Matsuno T. Aquatic animal carotenoids. Fisheries Sci. 67: 771-783 (2001) https://doi.org/10.1046/j.1444-2906.2001.00323.x
  14. Goodwin TW. Metabolism, nutrition, and function of carotenoids. Ann. Rev. Nutr. 6: 273-297 (1986) https://doi.org/10.1146/annurev.nu.06.070186.001421
  15. Matsuno T, Nagata S, Kitamura K. New carotenoids, parasiloxanthin, and 7,8-dihydroparaciloxanthin. Tetrahedron Lett. 50: 4601-4604 (1976) https://doi.org/10.1016/S0040-4039(00)93942-X
  16. Yamashita E, Arai S, Matsuno T. Metabolism of xanthophylls to vitamin A and new apocarotenoids in liver and skin of black bass, Micropterus salmoides. Comp. Biochem. Physiol. 113B: 485-489 (1996) https://doi.org/10.1016/0305-0491(95)02069-1
  17. Matsuno T, Tsushima M, Maoka T. Salmoxanthin, deepoxysalrnoxanthin, and 7,8-didehydrooeepoxysalmoxanthin from the salmon Oncorhynchus keta. J. Nat. Prod. 64: 507-510 (2001) https://doi.org/10.1021/np0004294
  18. Davies BH. Carotenoid metabolism in animals: A biochemist's view. Pure. Appl. Chem. 57: 679-684 (1985) https://doi.org/10.1351/pac198557050679
  19. Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in different body components of Indian shrimps. J. Sci. Food Agr. 85:167-172 (2005) https://doi.org/10.1002/jsfa.1977
  20. Renstrom B, Borch G, Liaaen-Jensen S. Natural occurrence of enantiomeric and meso-astaxanthin 4. Ex Shrimp (Pandalus borealis). Compo Biochem. Physiol. 69B: 621-624 (1981) https://doi.org/10.1016/0305-0491(81)90359-X
  21. Negre-Sadargues G, Castillo R, Seginzac M. Carotenoid pigments and tropic behavior of deep-sea shrimps (Crustacea, Decapoda, Alvinocarididae) from a hydrothermal area of the Mid-Atlantic Ridge. Compo Biochem. Physiol. 127A: 293-300 (2000) https://doi.org/10.1016/S1095-6433(00)00258-0
  22. Milicua JCG, Garate AM, Barbon PG, Gomez R. Borohydride reduction of the blue carotenoid-protein complex from Procambarus clarki. Compo Biochem. Physiol. 95B: 119-123 (1990) https://doi.org/10.1016/0305-0491(90)90257-T
  23. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod. 69: 443-449 (2006) https://doi.org/10.1021/np050354+
  24. Khare A, Moss GP, Weedon BCL. Mytiloxanthin and isomytiloxanthin, two novel acetylenic carotenoids. Tetrahedron Lett. 40: 3921-3924 (1973) https://doi.org/10.1016/S0040-4039(01)87073-8
  25. Maoka T, Matsuno T. Isolation and structural elucidation of three new acetylenic carotenoids from the Japanese sea mussel Mytilus coruscus. B. Jpn. Soc. Sci. Fish. 54: 1443-1447 (1988) https://doi.org/10.2331/suisan.54.1443
  26. Maoka T, Tsushima M, Matsuno T. New acetylenic carotenoids from the starfishes Asterina pectinifera and Asterias amurensis. Comp. Biochem. Physiol. 93B: 829-834 (1989) https://doi.org/10.1016/0305-0491(89)90054-0
  27. Matsuno T, Sakaguchi S. A novel marine carotenoid, mactraxanthin from the Japanese edible surf clam. Tetrahedron Lett. 24: 911-912 (1983) https://doi.org/10.1016/S0040-4039(00)81562-2
  28. Matsuno T, Sakaguchi S, Ookubo M, Maoka T. Isolation and identification of amaroucisxanthin A from the bivalve Paphia euglypta (sudaregai in Japanese). B. Jpn. Soc. Sci. Fish. 51: 1909 (1985) https://doi.org/10.2331/suisan.51.1909
  29. Matsuno T, Maoka T, Shiba K, Ookubo M. Isolation of fucoxanthinol from short-necked clam Tapes philippinarum (asari in Japanese). B. Jpn. Soc. Sci. Fish. 52: 167 (1986) https://doi.org/10.2331/suisan.52.167
  30. Matsuno T, Ookubo M, Komori T. Carotenoids oftunicates. III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J. Nat. Prod. 48: 606-613 (1985) https://doi.org/10.1021/np50040a015
  31. Ookubo M, Matsuno T. Carotenoids of sea squirts II. Comparative biochemical studies of carotenoids in sea squirts. Comp. Biochem. Physiol. 81B: 137-141 (1985) https://doi.org/10.1016/0305-0491(85)90174-9
  32. Fujiwara Y, Maoka T, Ookubo M, Matsuno T. Crassostreaxanthin A and B: Novel marine carotenoids from the oyster Crassostrea gigas. Tetrahedron Lett. 33 4941-4944 (1992) https://doi.org/10.1016/S0040-4039(00)61240-6
  33. Tsushima M, Matsuno T. Occurrence of 9'Z-$\beta$-echinenone in the sea urchin Pseudocentrotus depressus. Compo Biochem. Physiol. 118B: 921-925 (1997) https://doi.org/10.1016/S0305-0491(97)00302-7
  34. Tsushima M, Fujiwara Y, Matsuno T. Novel marine di-Zcarotenoids:Cucumariaxanthins A, B, and C from the sea cucumber Cucumaria japonica. J. Nat. Prod. 59: 30-34 (1996) https://doi.org/10.1021/np960022s
  35. Rousseau EJ, Davison AJ, Dunn B. Protection by $\beta$-carotene and related compounds against oxygen-mediated cytotoxicity and genotoxicity: Implications for carcinogenesis and anticarcinogenesis. Free Radical Bio. Med. 13: 407-433 (1992) https://doi.org/10.1016/0891-5849(92)90183-H
  36. Hirayama O, Nakamura K, Hamada S, Kobayasi Y. Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29: 149-150 (1994) https://doi.org/10.1007/BF02537155
  37. Mortensen A, Skibsted LH, Truscott TG. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 385: 13-19 (2001) https://doi.org/10.1006/abbi.2000.2172
  38. Chew BP, Park JS. Carotenoid action on the immune response. J. Nutr. 134: 257S-261S (2004) https://doi.org/10.1093/jn/134.1.257S
  39. Jackson H, Braun CL, Ernst H. The chemistry of novel xanthophyll carotenoids. Am. J. Cardiol. 101: 50D-57D (2008) https://doi.org/10.1016/j.amjcard.2008.02.008
  40. Di Mascio P, Murhy ME, Sies H. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Am. J. Clin. Nutr. 53:194S-200S (1991) https://doi.org/10.1093/ajcn/53.1.194S
  41. Fukuzawa K, Inokami Y, Tokumura A, Terao J, Suzuki A. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and $\alpha$-tocopherol in liposomes. Lipids 33: 751-756 (1998) https://doi.org/10.1007/s11745-998-0266-y
  42. Krinsky NI, Yeum KJ. Carotenoid-radical interactions. Biochem. Bioph. Res. Co. 305: 754-760 (2003) https://doi.org/10.1016/S0006-291X(03)00816-7
  43. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 418: 91-97 (1997) https://doi.org/10.1016/S0014-5793(97)01355-0
  44. Terao J. Antioxidant activity of $\beta$-carotene-related carotenoids in solution. Lipids 24: 659-661 (1989) https://doi.org/10.1007/BF02535085
  45. Lim BP, Nagao A, Terao J, Tanaka K, Suzuki T, Takama K. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178-184 (1992) https://doi.org/10.1016/0005-2760(92)90288-7
  46. Goto S, Kogure K, Abe K, Kimata Y, Kitahama K, Yamashita E, Terada H. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochim. Biophys. Acta 1512: 251-258 (2001) https://doi.org/10.1016/S0005-2736(01)00326-1
  47. Matsushita Y, Suzuki R, Nara E, Yokoyama A, Miyashita K. Antioxidant activity of polar carotenoids including astaxanthin-$\beta$-glucoside from marine bacterium on PC liposomes. Fisheries Sci. 66: 980-985 (2000) https://doi.org/10.1046/j.1444-2906.2000.00155.x
  48. Lawlor SM, O'Brien NM. Astaxanthin: Antioxidant effects in chicken embryo fibroblasts. Nutr. Res. 15: 1695-1704 (1995) https://doi.org/10.1016/0271-5317(95)02040-9
  49. Hill TJ, Land EJ, McGarvey DJ, Schalch W, Tinkler JH, Truscott TG. Interaction between carotenoids and the $CCI_3O_2{^.}$ radical. J. Am. Chem. Soc. 117: 8322-8326 (1995) https://doi.org/10.1021/ja00137a004
  50. Nomura T, Kikuchi M, Kubodera A, Kawakami Y. Proton-donative antioxidant activity of fucoxanthin with 1, 1-diphenyl-2-picrylhydrazyl (DPPH). Biochem. Mol. BioI. Int. 42: 361-370 (1997) https://doi.org/10.1080/15216549700202761
  51. Nishino H. Cancer prevention by carotenoids. Mutat. Res. 402: 159-163 (1998) https://doi.org/10.1016/S0027-5107(97)00293-5
  52. Yan X, Chuda Y, Suzuki M, Nagata T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotech. Bioch. 63: 605-607 (1999) https://doi.org/10.1271/bbb.63.605
  53. Conn PF, SchaIch W, Truscott TG The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B. 11: 41-47 (1991) https://doi.org/10.1016/1011-1344(91)80266-K
  54. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities. of carotenes and xanthophylls. FEBS Lett. 384: 240-242 (1996) https://doi.org/10.1016/0014-5793(96)00323-7
  55. Murakami A, Nakashima M, Koshiba T, Maoka T, Nishino H, Yano M, Sumida T, Kim OK, Koshimizu K, Ohigashi H. Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 149: 115-123 (2000) https://doi.org/10.1016/S0304-3835(99)00351-1
  56. Sugawara T, Baskaran V, Tsuzuki W, Nagao A. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J. Nutr. 132: 946-951 (2002) https://doi.org/10.1093/jn/132.5.946
  57. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agr. Food Chem. 55: 8516-8522 (2007) https://doi.org/10.1021/jf071848a
  58. Shon MY, Kim TH, Sung NJ. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 82: 593-597 (2003) https://doi.org/10.1016/S0308-8146(03)00015-3
  59. Roginsky V, Lissi EA. Review of methods to determine chainbreaking antioxidant activity in food. Food Chem. 92: 235-254 (2005) https://doi.org/10.1016/j.foodchem.2004.08.004
  60. Bertram JS, Vine AL. Cancer prevention by retinoids and carotenoids: Independent action on a common target. Biochim. Biophys. Acta 1740: 170-178 (2005) https://doi.org/10.1016/j.bbadis.2005.01.003
  61. Beta Carotene Cancer Prevention Study Group. The AlphaTocopherol. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New Engl. J. Med. 330: 1029-1035 (1994) https://doi.org/10.1056/NEJM199404143301501
  62. Omenn GS, Goodman GE, Thomquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New Engl. J. Med. 334: 1150-1155 (1996) https://doi.org/10.1056/NEJM199605023341802
  63. Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15: 15-19 (1994) https://doi.org/10.1093/carcin/15.1.15
  64. Tanaka T, Makita H, Ohnishi M, Mori H, Satoh K, Hara A. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin, and canthaxanthin. Cancer Res. 55: 4059-4064 (1995)
  65. Tanaka T, Kawamori T, Ohnishi M, Makita H, Mori H, Satoh K, Hara A. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls, astaxanthin, and canthaxanthin during the postinitiation phase. Carcinogenesis 16: 2957-2963 (1995) https://doi.org/10.1093/carcin/16.12.2957
  66. Kurihara H, Koda H, Asami S, Kiso Y, Tanaka T. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci. 70: 2509-2520 (2002) https://doi.org/10.1016/S0024-3205(02)01522-9
  67. Kozuki Y, Miura Y, Yagasaki K. Inhibitory effects of carotenoids on the invasion of rat ascites hepatoma cells in culture. Cancer Lett. 151: 111-115 (2000) https://doi.org/10.1016/S0304-3835(99)00418-8
  68. Jyonouchi H, Sun S, Iijima K, Gross MD. Antitumor activity of astaxanthin and its mode of action. Nutr. Cancer 36: 59-65 (2000) https://doi.org/10.1207/S15327914NC3601_9
  69. Yamamoto I, Maruyama H. Effect of dietary seaweed preparations on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett. 26: 241-251 (1985) https://doi.org/10.1016/0304-3835(85)90047-3
  70. Yamamoto I, Maruyama H, Moriguchi M. The effect of dietary seaweeds on 7, 12-dimethylbenz[a]anthracene-induced mammary tumorigenesis in rats. Cancer Lett. 35: 109-118 (1987) https://doi.org/10.1016/0304-3835(87)90033-4
  71. Okuzumi J, Nishino H, Murakoshi M, Iwashima A, Tanaka Y, Yamane T, Fujita Y, Takahashi T. Inhibitory effects offucoxanthin, a natural carotenoid, on N-myc expression and cell cycle progression in human malignant tumor cells. Cancer Lett. 55: 75-81 (1990) https://doi.org/10.1016/0304-3835(90)90068-9
  72. Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, Nishino H, Tanaka Y. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N'-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 68: 159-168 (1993) https://doi.org/10.1016/0304-3835(93)90142-V
  73. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A. Carotenoids affect proliferation of human prostate cancer cells. J. Nutr. 131: 3303-3306 (2001) https://doi.org/10.1093/jn/131.12.3303
  74. Kotake-Nara E, Asai A, Nagao A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 220: 75-84 (2005) https://doi.org/10.1016/j.canlet.2004.07.048
  75. Hosokawa M, Wanezaki S, Miyauchi K, Kurihara H, Kohno H, Kawabata J, Odashima S, Takahashi K. Apoptosis inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Sci. Technol. Res. 5: 243-246 (1999) https://doi.org/10.3136/fstr.5.243
  76. Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPAR$\gamma$ ligand, troglitazone, on colon cancer cells. Biochim. Biophys. Acta 1675: 113-119 (2004) https://doi.org/10.1016/j.bbagen.2004.08.012
  77. Cohen GM. Caspases: The executioners of apoptosis. Biochem. J. 326: 1-16 (1997) https://doi.org/10.1042/bj3260001
  78. Konishi I, Hosokawa M, Sashima T, Kobayashi H, Miyashita K. Halocynthiaxanthin and fucoxanthinol isolated from Halocynthia roretzi induce apoptosis in human leukemia, breast and colon cancer cells. Comp. Biochem. Physiol. 142: 53-59 (2006) https://doi.org/10.1016/j.cbpc.2005.10.005
  79. Dulloo AG, Samec S. Uncoupling proteins: Their roles in adaptive thermogenesis and substrate metabolism reconsidered. Brit. J. Nutr. 86: 123-139 (2001) https://doi.org/10.1079/BJN2001412
  80. Lowell BB, S-Susullc V, Hamann A, Lawltts, JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366: 740-742 (1993) https://doi.org/10.1038/366740a0
  81. Serra F, Bonet ML, Puigserver P, Oliver J, Palou A. Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids. Int. J. Obesity 23: 650-655 (1999) https://doi.org/10.1038/sj.ijo.0800897
  82. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCPl expression in white adipose tissues. Biochim. Bioph. Res. Co. 332: 392-397 (2005) https://doi.org/10.1016/j.bbrc.2005.05.002
  83. Maeda H, Hosokawa M, Sashima T, Miyashita K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/ diabetic KK-N mice. J. Agr. Food Chem. 55: 7701-7706 (2007) https://doi.org/10.1021/jf071569n
  84. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Cire. Res. 96: 939-949 (2005) https://doi.org/10.1161/01.RES.0000163635.62927.34
  85. Hotamisligil GS. Inflammation and metabolic disorders. Nature 444: 860-867 (2006) https://doi.org/10.1038/nature05485
  86. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett. 580: 2917-2921 (2006) https://doi.org/10.1016/j.febslet.2006.04.028
  87. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116: 1784-1792 (2006) https://doi.org/10.1172/JCI29126
  88. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-$\alpha$: Direct role in obesity-linked insulin resistance. Science 259: 87-91 (1993) https://doi.org/10.1126/science.7678183
  89. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BW. Increased adipose tissue expression of tumor necrosis factor-$\alpha$ in human obesity and insulin resistance. J. Clin. Invest. 95: 2409-2015 (1995) https://doi.org/10.1172/JCI117936
  90. Kitagawa Y, Bujo H, Takahashi K, Shibasaki M, Ishikawa K, Yagui K, Hashimoto N, Noda K, Nakamura T, Yano S, Saito Y. Impaired glucose tolerance is accompanied by decreased insulin sensitivity in tissues of mice implanted with cells that overexpress resistin. Diabetologia 47: 1847-1853 (2004) https://doi.org/10.1007/s00125-004-1530-4
  91. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. BioI. Chem. 271: 10697-10703 (1996) https://doi.org/10.1074/jbc.271.18.10697
  92. Shiratori K, Ohgami K, Ilieva I, Jin XH, Koyama Y, Miyashita K, Yoshida K, Kase S, Ohno S. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res. 81: 422-428 (2005) https://doi.org/10.1016/j.exer.2005.03.002
  93. Bhattacherjee P, Williams RN, Eakins KE. A comparison of the ocular anti-inflammatory activity of steroidal and nonsteroidal compounds in the rat. Invest. Ophth. Vis. Sci. 24: 1143-1146 (1983)
  94. Matsuno T, Ookubo M, Nishizawa T, Shimizu I. Carotenoids of sea squirts. I. New marine carotenoids, halocynthiaxanthin, and mytiloxanthinone from Halocynthia roretzi. Chem. Pharm. Bull. 32:4309-4315 (1984) https://doi.org/10.1248/cpb.32.4309
  95. Konishi I, Hosokawa M, Sashima T, Maoka T, Miyashita K. Suppressive effects of alloxanthin and diatoxanthin from Halocynthia roretzi on the LPS-induced expression of proinflammatory genes in RAW264.7 cells. J. Oleo. Sci. 57: 181-89 (2008) https://doi.org/10.5650/jos.57.181
  96. Burger D, Dayer JM, Palmer G, Gabay C. Is IL-1 a good therapeutic target in the treatment of arthritis? Best Pract. Res. Cl. Rh. 20: 879-896 (2006) https://doi.org/10.1016/j.berh.2006.06.004
  97. Ziegler-Heitbrock HW. Molecular mechanism in tolerance to lipopolysaccharide. J. Inflamm. 45: 13-26 (1995)