References
- Agre P, Bennett V. Qualitative and functional analyses of spectrin, ankyrin, band 3, and calmodulin in human red cell membranes. Methods Hematol 19: 95-98, 1988
- Ames GF. Lipids of Salmonella tryphimurium and Escherichia coli: structure and metabolism. J Bacteriol 95: 833-843, 1968
- Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65: 701-734, 2003 https://doi.org/10.1146/annurev.physiol.65.092101.142459
- Bishop DG, Rutberg L, Samuelsson B. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem 2: 448-453, 1967 https://doi.org/10.1111/j.1432-1033.1967.tb00158.x
- Bishop EA, Bermingham MAC. Lipid composition of Gram-negative bacteria, sensitive and resistant to streptomycin. Antimicrobial Agents Chem 4: 378-379, 1973
- Bloch K. Choleterol: evolution of structure and function. In: Vance DE, Vance J ed, Biochemistry of lipids and membranes. Amsterdam: Elesevier Science Publishers, p 363-382, 1991
- Boman HG. Innate immunity and the normal microflora. Immunol Rev 173: 5-16, 2000 https://doi.org/10.1034/j.1600-065X.2000.917301.x
- Chi SW, Kim JS, Kim DH, Lee SH, Park YH, Han KH. Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4. Biochem Biophys Res Commun 352: 592-597, 2007 https://doi.org/10.1016/j.bbrc.2006.11.064
- Clark DP, Durell S, Maloy WL, Zasloff M. Ranalexin: a novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to bacterial antibiotic, polymyxin. J Biol Chem 269: 10849-10855, 1994
- Clejan S, Krulwicj TA, Mondrus KR, Sept-Young D. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168: 334-340, 1986 https://doi.org/10.1128/jb.168.1.334-340.1986
- Conlon JM. Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29: 1815-1819, 2008 https://doi.org/10.1016/j.peptides.2008.05.029
- Cronan JE, Roy-Vagelos P. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta 165: 379-387, 1972
- Daleke DL. Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr Opin Hematol 15: 191-195, 2008 https://doi.org/10.1097/MOH.0b013e3282f97af7
- Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35: 12612-12622, 1996 https://doi.org/10.1021/bi960835f
- Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Ann Rev Biochem 66: 199-232, 1997 https://doi.org/10.1146/annurev.biochem.66.1.199
- Eun SY, Jang HK, Han SK, Ryu PD, Lee BJ, Han KH, Kim SJ. A helix-induced oligomeric transition of gaegurin 4, an antimicrobial peptide isolated from a Korean frog. Mol Cells 21: 229-236, 2006
- Gennis RB. The structure and composition of biomembranes. In: Gennis RB ed, Biomembranes, molecular structure and functions. New York: Springer Verlag, p 1-35, 1991
- Gidalevitz D, Ishitsuka Y, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KY. Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Acad Sci USA 100: 6302-6307, 2003 https://doi.org/10.1073/pnas.0934731100
- Kagan B, Selsted ME, Ganz T, Lehrer RI. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87: 210-214, 1990 https://doi.org/10.1073/pnas.87.1.210
- Kim HJ, Han SK, Park JB, Baek HJ, Lee BJ, Ryu PD. Gaegurin 4, a peptide antibiotic of frog skin, forms voltage-dependent channels in planar lipid bilayers. J Pept Res 53: 1-7, 1999 https://doi.org/10.1111/j.1399-3011.1999.tb01611.x
- Kim HJ, Kim SS, Lee MH, Lee BJ, Ryu PD. Role of C-terminal heptapeptide in pore-forming activity of antimicrobial agent, gaegurin 4. J Pept Res 64: 151-158, 2004 https://doi.org/10.1111/j.1399-3011.2004.00183.x
- Kim KS, Fulton RW. Ultrastructure of Datura stramonium infected with an euphorbia virus suggestive of witefly-transmitted germinivirus. Phytopathology 74: 236-241, 1984 https://doi.org/10.1094/Phyto-74-236
- Lau YH, Caswell AH, Brunschwig J, Baerwald RJ, Garcia M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem 254: 540-546, 1979
- Matsumoto K, Kusaka J, Nishibori A, Hara H. Lipid domains in bacterial membranes. Mol Microbiol 61: 1110-1117, 2006 https://doi.org/10.1111/j.1365-2958.2006.05317.x
- Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462: 1-10, 1999 https://doi.org/10.1016/S0005-2736(99)00197-2
- Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta (In press)
- Matsuzaki K, Harada M, Handa T, Funakoshi S, Fujii N, Yajima H, Miyajima K. Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta 981: 130-134, 1989 https://doi.org/10.1016/0005-2736(89)90090-4
- Matsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423-3429, 1995 https://doi.org/10.1021/bi00010a034
- Morein S, Andersson AS, Rilfors L, Lindblom G. Wild-type Escherichia coli cells regulate the membrane lipid composition in a 'Window' between gel and non-lamellar structures. J Biol Chem 271: 6801-6809, 1996 https://doi.org/10.1074/jbc.271.12.6801
- Morikawa N, Hagiwara K, Nakajima T. Brevinin-1 and brevinin-2, unique antimicrobial peptides from the skin of the frog Rana brevipoda porsa. Biochem Biophys Res Comm 189: 184-190, 1992 https://doi.org/10.1016/0006-291X(92)91542-X
- Orlov DS, Nguyen T, Lehrer RI. Potassium release, a useful tool for studying antimicrobial peptides. Microbiol Methods 49: 325-328, 2002 https://doi.org/10.1016/S0167-7012(01)00383-9
-
Park JB, Kim HJ, Ryu PD, Moczydlowski E. Effect of phosphatidylserine on unitary conductance and
$Ba^{2+}$ block of the BK$Ca^{2+}$ -activated$K^+$ channel: re-examination of the surface charge hypothesis. J Gen Physiol 121: 375-398, 2003 https://doi.org/10.1085/jgp.200208746 - Park S, Son WS, Kim YJ, Kwon AR, Lee BJ. NMR spectroscopic assessment of the structure and dynamic properties of an amphibian antimicrobial peptide (Gaegurin 4) bound to SDS micelles. J Biochem Mol Biol 40: 261-269, 2007 https://doi.org/10.5483/BMBRep.2007.40.2.261
-
Park SH, Kim YK, Park JW, Lee BJ, Lee BJ. Solution structure of the antimicrobial peptide gaegurin 4
$^{1}H$ and$^{15}N$ nuclear magnetic resonance spectroscopy. Eur J Biochem 267: 2695-2704, 2000 https://doi.org/10.1046/j.1432-1327.2000.01287.x - Park JM, Jung JE, Lee BJ. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Comm 205: 948-954, 1994 https://doi.org/10.1006/bbrc.1994.2757
- Shai Y. From innate immunity to de-novo designed antimicrobial peptides. Curr Pharm Des 8: 715-725, 2002 https://doi.org/10.2174/1381612023395367
- Simmaco M, Mignogna G, Barra D, Bossa F. Novel antimicrobial peptides from skin secretion of the European frog, Rana esculenta. FEBA Lett 324: 159-161, 1993 https://doi.org/10.1016/0014-5793(93)81384-C
- Won HS, Kang SJ, Lee BJ. Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochim Biophys Acta 2009 (In press)
- Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395, 2002 https://doi.org/10.1038/415389a