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The line shape functions for the Doppler-broadened gamma ray spectrum are considered in the '"B(n,@y) Li reaction occurring
in a surrounding medium where the excited 'Li nucleus is slowed down and stopped before decay. The phenomenological
form of the stopping power was used for the broadening effect. Convolution with the detailed response of a germanium
detector is taken into consideration for the simplest case of solely electronic stopping. A numerical study for the analysis of
"B by thermal neutron capture is conducted by performing a parametric search and fitting the measured spectrum in a least-
squares approach. In comparison with the previous numerical approach using the same analysis, the computational speed is
increased and reliable information concerning the stopping power of the medium is obtained while estimating the uncertainty.

Implementation of the routine analysis of '°B is facilitated on a recent version of the gamma ray spectrum analysis package
HyperGam.
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1. INTRODUCTION

Analysis of the Doppler-broadened (DB) line shape
can provide physical information related to a wide range
of phenomena. The Doppler shift attenuation method
(DSAM) is a well-characterized and useful method to
obtain the lifetime of excited nuclei that are produced in
a nuclear reaction ([1,2] and the references therein). In
the inverted Doppler shift attenuation (IDSA) method,
information on the stopping power is obtained for a
recoiling 'Li nucleus slowing down in various media by
using the reaction of ""B(n,ay)’Li as induced by thermal
neutrons [3-6]. Experimental efforts are also ongoing to
determine the coupling constants in the weak interaction
by measuring the decay of a nucleus in a muon capture
(p,v,) reaction [7,8]. A recent study investigated the
present topic of the DB line shape and its application to
the analysis of 7-lines emitted from exotic nuclei near the
neutron drip line [9]. Using a high resolution crystal
spectrometer, the gamma-ray-induced Doppler effect
(GRID), despite being small, was observed for a decaying
nucleus recoiling from a cascade gamma ray emission
[10]. In a different field and context, the DB line shape
obtained from the annihilation of a positron in a medium
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was shown to be able to probe the momentum distribution
of orbital electrons. This technique has been applied to
the analysis of materials [11-13]. Therefore, it is clear that
the present topic is related to a wide range of applications.

In most of these techniques, an excited nucleus is
created in a reaction of M(my, ms)M," induced by particle
m; with laboratory energy E,. Naturally, many features in
the analysis of the Doppler effect are common in these
types of experiments. Here, the initial distribution of the
recoil particle My is determined by kinematics and a
reaction mechanism. In DSAM measurements, the direction
of the recoil particle is confined within a narrow cone of
beam direction and hence lead to a Doppler shift of the
emitted gamma rays. In other types of measurements
such as IDSA and the (u,v,) reaction, the distribution of
the recoil particle is omnidirectional or, in a simpler case,
isotropic in the laboratory, mainly due to reaction
kinematics. The gamma ray emission spectrum in this
case is therefore Doppler-broadened in contrast to the
Doppler-shifted spectrum in a typical DSAM. This is
clearly shown for the two types of reactions by
comparing the y™' factor, which is the ratio of the speed of
M," in the center-of-mass (CM) system, to the speed of
the CM in the laboratory. This is given by [1]
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Table 1. Kinematic Broadening Factor y for Several Types of Reactions

Experimental Type Reaction (E,) [reference] Qo [MeV] Ei [eV] 7’
*Be(d, p)'’Be’(3.37 MeV) [14] 4.590 2.8%x10° 0.83
DSAM *Be(a, n)?C'(4.43 MeV) [15] 5.704 32%10° 0.55
'SO(CHe, p)'*F"(1.70-3.84 MeV) [16] 2.012 3.4X10° 0.57-0.33
IDSA "B(n, @)'Li’(0.478 MeV) [4] 2.792 Thermal (~0.025) ~ 24000
5Si(u, v)PAL'(2.202 MeV) [17] 101 ~ 570 max.
Muon capture . Moderated (~0.5-1.0) ——————
50(p, v)'*N"(0.397, 0.298 MeVs) [7] 95 ~ 550 max,

m + Mz 0 jJl/z

yi= Momsf
M. M, E @

where Q = Qq - E, Qo is the reaction Q-value for the
ground state of My, and E, is the excitation energy of M,".
In Table 1, the ¥ ratios are shown for a few distinguishing
classes of reaction kinematics. The reaction class in the
bottom row has a large Q value in comparison to the
incoming energy and consequently shows a considerable
amount of kinematic broadening. The present study is
concerned about the second class of reactions even
though the Doppler effect line shape formulae are similar
in both reaction classes. For simplification, the following
assumptions and approximations are used with respect to
reaction and detection.

i) The distribution of the recoil nuclei in the laboratory
is isotropic.

ii) The Doppler effect is approximated as a first-order
effect in velocity, B=v/c.

iii) The intrinsic y-line shape emitted from a stationary
nucleus is taken to be infinitely sharp.

iv) The recoil nuclei are stopped by collisions with medium
atoms, and the stopping collisions undergo a smooth,
continuous process so as not to distort the initial recoil
distribution.

v) The gamma rays are measured with a germanium
detector of typical resolution.

Under these limiting but realistic assumptions, the DB
line shape in this study can be represented by a closed
formula with a few parameters. In the most simplified
case of stopping, as addressed in an IDSA study of the
""B(n,ay)’Li reaction induced by thermal neutron, the
emission spectrum is convoluted with the semi-empirical
response of a germanium detector, leading to an analytic
form. Numerical work has been done for the routine
analysis of 'B and the results are shown in this work.
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2. REVIEW OF DOPPLER-BROADENED 7-LINE
SHAPES
When a gamma ray is emitted at time t from an
excited nucleus moving at velocity v(t), the Doppler
shifted energy of the gamma ray is given by

E, = EO(I-F—V—(QCOSHJ )]

[

where E, is the energy emitted from a stationary nucleus
and 0 is the angle between the nucleus velocity and the
direction of the emission. By defining a time-
independent variable [18],

E,-E,

£= Eyv,/c ’ &)

where vy is the initial velocity of the recoil nucleus, Eq.
(2) can be rewritten as

cosf = g0 [EN)

v(t)

Since the magnitudes of Eo and v, are kinematically
fixed, the variable ¢ in Eq. (3) is a dimensionless scale of
the energy E,. By considering the recoil nucleus stopping
in a medium, v(t) in Eq. (4) is a decreasing function of
time and hence, for a given energy &, cosf is an
increasing function of time but is limited to a maximum
value of 1. When cos@ = 1 occurs at time T, v(t=T) = gvo
and there is then no further contribution of the DB
gamma rays to the given energy interval around . The
number of gamma rays with energy between g and g+de
was studied long ago and it is given by [18]

dn()= A [ exp(~An)I(cos6)3, (cos6) di )
where A is the gamma decay constant of the excited
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nuclear state, I(cosg)d-cosf is the intensity of the gamma
ray emission at angle 6, and 8:cos0 is a partial derivative
with respect to ¢ at a fixed time t and is equal to veds
/v(t). In terms of the recoil nucleus-gamma angular
correlation function W(9),

Ny

I(cosB) = —E—W(H) = %’"{l + Zan]’n(cose)} = —&me cos”6  (6)

m=0

where N, is the total number of gamma emissions, the a,
variables are angular correlation coefficients with n = 2
and 4 generally being sufficient, and the b, variables are
the coefficients of the polynomial in cosf obtained by
expanding the Legendre function P, values. By
combining Eqs. (4), (5), and (6), the emission line shape
is obtained by

dn(e) Ny &, . owa (7 dt
- __l b m._ nr “'ﬂt
=S Z W™ | exp( oy O

where v(t) is dependent on the slowing down medium. It
is therefore obtained by integrating the stopping power
equation [9],

_ v dv
t=M, f (~dE / dx) ()

where E is the kinetic energy of the excited nucleus M..

A degree of complication exists in different models
for describing the energy loss of moving ions in matter.
The recently developed and widely-used code SRIM
gives the stopping power in tabular data for a wide range
of energy and ion-medium combinations [19]. The
energy loss theory of Lindhard, Scharff and Schigtt
(LSS) has also been used widely to describe ion stopping
in a medium [20]. When either of these stopping powers
is used in Eq. (8), however, the integration can only be
done numerically. For an empirical approach to the
stopping power, the phenomenological expression widely
adopted in studies of DSAM is useful for analytic
purposes. It is given in the most general form using three
parameters [15,16,21], as shown below,

= FLy S S 4 Rl )
dx dt Va v

where vs is the Bohr velocity (=c¢/137) and the constants
K., K,, and K; are adjustable parameters. Although the
energy loss in Eq. (9) is diverging in the limit of zero
velocity, which is inconsistent with the LSS theory and
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SRIM, Eq. (9) considers a high initial velocity in terms
of the K; parameter. It is noted that 7 = 1/A is the mean
lifetime of the excited state of the nucleus while a
characteristic time of slowing down can be defined as 7,
=1/A, = Mavs/2K, where K is the combined quantity of
K., K,, and K3, as listed in Appendix A [1]. Using Eq.
(9), the time t in Eq. (8) was obtained as a function of
speed v in previous studies. This is also discussed in
Appendix A [9,21].

To obtain the DB line shape for the most general
form of stopping power, the integration in Eq. (7) is
performed. Given that analytical integration in Eq. (7) is,
however, not easy, the problem was solved by numerical
integration in all previous related studies [9,21]. The
numerical integration has, however, the drawback of
ambiguity in determining the line shape parameters by
fitting to an experimental DB spectrum. For example, in
a recent study of the *Al decay fed in a muon capture by
281, Fynbo showed that significantly different estimates
based on SRIM or the LSS stopping power or the
phenomenological estimate by Eq. (9) led to similar line
shapes with differences only in detailed aspects [9]. In
this study, the general analytical solution for the
integration in Eq. (7) is found in terms of special
functions. This is listed in Appendix A. The obtained
solution is comprised of an Appell function of the first
kind [22], where the parameters governing the line shape
are AAs, Ko/Ke, Ki/K., and vo/vs. From the general
analytical solution, it is, however, shown in Appendix A
that the line shape is dominated by the magnitude of the
ratio of A/A. This therefore explains the ambiguity of the
line shape parameters in a numerical approach for the
line shape function as observed when both parameters A
and A, are determined by fit to the experimental line
shape [9]. Although the Appell function is calculable
using an existing mathematical package [23], it is not
useful at present to apply to practical problems, as the
computation is too slow. Therefore, interest in an exact
analytical solution has ebbed, except for theoretical
concerns at present.

If the initial recoil velocity, vo/vs, of the excited
nucleus is not high, the K; term in the stopping power
can be neglected. If 7 is considerably smaller than .,
practically all of the excited nuclei decay out before
reaching the low velocity region where nuclear stopping
dominates. When both of these two conditions are met,
the condition of stopping is simply reduced using only
the electronic term. The full solutions of Eqs. (7) and (8)
in this case are straightforward and were given by Pratt
long ago [18]. A practically identical solution with a
good illustration of the Doppler-broadening effect and a
discussion of the validity of using only the electronic
stopping in the '""B(n,ay)’Li reaction are given by
Neuwirth et al. [3,4]. Here, the line shape with no
consideration of the angular correlation (m=0 only) is
given, as [3,4,18]
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N 47D {1—|g|“””"'}, AID#1,
dn(e) _| 2 (A/D)-1 (10)
de | Noyoo ! AID=1,

2 7

where the degradation constant D is defined as D=A/2 =
Ke/ M4VB.

3. ANALYSIS OF MEASURED 7-LINE SHAPES IN
THE "Bln, ay¥'Li REACTION

The simplest solution given in Eq. (10) is applied in
many studies concerning or utilizing "’B(n,ay)’Li
reaction induced by thermal neutrons. For example, the
"“B(n,ay)"Li reaction is widely used for the routine
detection of boron in samples by thermal neutron
activation [24-27]. There are several practical problems
in the analysis of a DB boron spectrum. The line shape in
Eq. (10) is dependent on the sample medium in terms of
the degradation constant D. In addition, there could be
gamma rays of energy near 478 keV in the DB peak from
the "“B(n,ay)’Li reaction with interfering lines originating
from impurities or other component elements in the
sample. One familiar example is the 472 keV y-line that
is emitted from a neutron capture of *Na. Therefore,
multi-parameter peak fitting is required to resolve the
overlapping peaks from the DB peak and to describe the
DB peak by the degradation constant D. In the fitting
process, a convolution of the emission spectrum with the
detector response function is required. Previous studies
have solved this problem in terms of numerical integration
or convolution or approximate treatment of the line shape
[24-29]. These previous methods have limitations in the
peak fitting speed, the uncertainty assignment of the line
shape parameter especially of the degradation constant
D, or in terms of their inaccurate descriptions of the DB
line shape. The present study solved the convolution with
a detector response by combining analytic functions in a
convergent series thereby reducing the computational
time required for multi-parameter peak fitting in a routine
analysis task. A reliable estimate of the uncertainty on
the obtained parameters was also obtained, which is
either missing or assigned without details in existing
approaches [24-29].

3.1 DB Emission Line Shape

The spectrum of DB gamma rays emitted from "Li"
while slowing down in a stopping medium is given by
changing the variable ¢ in Eq. (10) into an explicit
parameter [3,4,18,28],

AD

MJ . |E-E|<AE,

E)=gq|1-
8(E)=¢q [EOVO/C

an
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where E is the energy of the emitted gamma ray, and g is
the height of the spectrum at £ = E,, which is related to

. N, A
the number of emitted gamma rays Ny by g=——2 %>
2Ew, A-D
By changing the variables to
Eyv, A
=FE-E, =09 _AE | =1,
x 0 xm c m a D
N, 1
g, =", and q=q(a)=qo(1+—)-
2 a

m

the emission line shape for the non-zero « is reduced to a
suitable form for convolution,

gx)=g"+g° (0= q(a){l ~('i) ]

X

m

-x, Sx<+x,; g(x)=0, otherwisex (12)

where x is the amount of Doppler shift, x,, is the maximum
amount of Doppler shift, ¢ is a parameter describing the
degradation-free effect on the recoil nucleus, and qo is the
height of the spectrum for emission in a vacuum. Hence,
g"° = qp (= constant) describes the DB spectrum of gamma
rays emitted in a vacuum (@ = o), and g°(x) describes the
effect of the degradation of "Li” in the stopping medium.
The superscripts ND and D denote the medium
nondegrading and degrading, respectively. For the case
of the "B(n,ay)’Li reaction induced by thermal neutrons,
Eo; =478 keV, vo/c = 1.6 X 10?2 [4,24], AE, = 7.6 keV, A =
9.49+0.03 ps' [30], and typically 0 < D < 2-3 ps’!
depending on the stopping power of the medium. Hence,
« is a positive real number while no terrestrial stopping
medium is known to give an a value of less than 1. Cases
with @ between 0.5 and infinity were considered in the
following numerical study.

3.2 Convolution of Detector Response with a DB 7-
Line Shape

There are many methods of describing the germanium
detector response to a monoenergetic gamma ray.
Commonly, the main part of the response is described by
a Gaussian function. There are many variants to describe
the low-energy tail part of the peak and the shape of the
background. In this study, the response functions used
for the low-energy tail and the step-background were
taken from the code HYPERMET [31]. For a position x
relative to the peak position E,, the peak response is
given by

J(x)=fo(X)+ fo(x)=H exp{— (g)_}+ AH exp(%)-;—erfc(% + E%] ,
13)

where fg(x) describes the Gaussian and fsr(x) describes
the short-term tailing effect due to incomplete charge
collection and pile-up. By normalizing fs(x), H is obtained
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by 1/84x. For a detailed discussion of the tail response,
the Gaussian efficiency function eo(x) for the peak area
is introduced, with no tail consideration, by the Gaussian
area under a peak divided by the number of gamma rays
of mono-energy x, which is emitted from the source. For
a simple approach to the DB peak, £s(x) is taken as the
center value gqo (constant) in the domain -x, < x < x.
The effect of energy variation in gq(x) on the area is
discussed later in this work.

The full detected line shape is obtained by applying a
convolution integral between the DB emission spectrum,
Eq. (12), and the germanium detector response function,
Eq. (13). Previous studies dealt with convolution by
applying numerical integration on the Gaussian detector
response [24,25,28]. In other cases they used an analytic
solution for the restricted case of a non-degraded
rectangular spectrum convoluted with a Gaussian response
[26,27]. Recent studies consider the numerical convolution
of the full detector response functions in Egs. (13) and (19)
for both a degraded spectrum [29] and a non-degraded
rectangular spectrum [32].

The convolution integral between the emission
spectrum and the detector response functions is given by

FOo= [ g% f(x=y)dy
= [ "0 *[folr= )+ fir (=]
=Fo(x)+ Fo (). (14)
The first part of the convolution with the Gaussian
function is mainly dominant for the overall DB shape. It

is given by a combination of analytic functions and
convergent series:

Fo)= [lg 0+ 0 fox- )y
= B+ Y (1)

where

m

F(?:D(x) = .[j,g‘”'”(y)*fg(x—)«')dy

=N0560|— (erx,,,j~ (x—xm)
™ Lerf 5 erf] 5 R (15)

m

i I
FoW) = [78" 0% fos =)y =— F"()

atl n
NOEGD( l) 5 x* (a 1)' x° a | x
2 = — | exp| ——5 [ —+= | Pl—+—+n"2
wdrt alx ) e 272 25| Sty

(16)
with the coefficient a, values are given by
ﬁ (a+2r-1
a, =L p2] and g,=1.
@n-nial (17)
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Here, P(a,x) is the incomplete gamma function
defined as

P(a,x) = Ly(ot, X) Cet

1
@ = (o> 0) 18
where [7(x) is the gamma function [33].

In a gamma ray spectrum measured with a modern
HPGe detector, the tail term Fsr(x) is usually small, which
can lead to slight distortion of the low-energy side of a
peak. The second integration Fsr(x) with the short-term
tail function results in greatly complicated expressions
comprised of multiple series. As described in section 3.4,
it was found that the obtained expression was not only
complicated but also that it showed slow convergence of
the series in comparison to the alternative method of
numerical integration. Therefore, it is not listed in this
work, and the integration is substituted by a numerical
method.

3.3 Treatment of the Background

The step-background response is due to Compton
scattering in the detector (escape peaks) or to Compton
scattering into the detector from surrounding materials.
Hence, a convolution is required between the DB emission
line shape and the step-background response [31] of

1 X
hS (x) = SHEerfC(;J . (19)

The result is shown in Appendix B. The long-term
tailing background function is similar in shape to the short-
term tailing function fsr(x) in Eq. (13) but has different
values for parameters p and v [31]:

h(x)=TH exp(ijlerfc(i + «#wj (20)
V)2 u o 2v

As T is smaller than H by several orders of magnitude,
long-term tailing is not important in reality. Hence, it is
neglected in this study.

The continuum background is chosen either by a
constant, a first- or a second-order polynomial in X,

ho(x)=a+bx+ex’ 21

of which the origin is not related to the DB source and
therefore, a convolution is not required.

3.4 Numerical Implementation

To check the numerical accuracy and speed of the
developed formulae, a calculation of the convolution
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integrals in Eqs. (14) and (B-1) was done by numerical
integration using the Gaussian quadrature routine ‘quadl’
in MATLAB [34]. Using the formulae developed in this
study with the convergence criteria of 10 for the sums
in Egs. (16) and (B-1), and using the technique of
vectorizing variables, the calculation speed was observed
to increase by a factor of approximately 2 compared to
that of numerical convolution at the same accuracy. For
the case of a short-term tail convolution, the speed was
lower due to multiple sums in the obtained formula.
Hence, numerical integration is adopted for the
convolution of the short-term tail function. Within the
adopted numerical accuracy (10°°), both routines give
identical results.

Line shapes obtained by the present numerical

T ex10°
[
o]
5 4
B 5x10°
€
§ 4x40° Full-line <<%
3x10" 4 ’j i =
X Gaussian a=20
2x10* - a=100
1x10* ! step-background
Short tail
0 Z 99909
T ¥ T ¥ T
-30 -20 -10 0 10 20 30
Channel {0.5 keV/chj
2 ox10*
& ‘
_g 8x10
£ 7x10°-
=
8 ex10*4
5x10" -
4%10* an05
3x10° a=10
2x10*4 /
1x10° - 4 / Step-background
M tail
0 VCU0POVOGLTouS
T T T L} k]
-30 -20 ~10 0 10 20 30

Channel [0.5 keV/ch]

Fig. 1. Full Line Shapes of the DB Spectrum by Including the
Convoluted Gaussian, Tail, and Step-Background Responses of a
HPGe Detector. The Values Taken are: Gain = 0.5 keV/ch, N, =
9.72X10°,86=2ch, A=0.05,7=6,8=105,$=0.01,and 6 = 5.

The a Values Larger than 1.0 are Considered in the Top Graph:
a =2.0 (Black Lines and Filled Symbols) and @ = 10.0 (Gray
Lines and Open Symbols). The & Values Smaller than or Equal
to 1.0 are Considered in the Bottom Graph: « = 0.5 (Black Lines
and Symbols) and @ = 1.0 (Gray Lines and Open Symbols)
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simulation are shown in Figure 1. Although the
magnitude of the short tail is exaggerated compared to
that of realistic spectrum measured by a modern HPGe
detector, the overall shapes before and after convolution
are clearly shown, with parts of the tail and the step-
background causing a slight asymmetry in the top region
of the DB spectrum.

It should be noted that Eq. (15) was derived earlier
by assuming no degradation effect and only a Gaussian
response in the detector [26]. Due to the fact that the
approximations made in previous studies neglected both
the degrading effect given in Eq. (12) and the short-term
tail response, fitting to realistic data requires X as a fit
parameter [25-27]. As xn is a constant determined by the
reaction Q-value and y-transition energy, it is not
considered to be a fit parameter but is fixed to 7.6 keV
for the "’B(n,ay)’Li reaction in the present study.

For a parametric search, the unknown value Noego is
taken as the single parameter Is to reduce coding for the
developed equations. The integrated area of the DB peak
is then given by

1+ 2P| - T
1—[6{1+5J;exp( 4’32]}

using the searched values of I, A, &, n(=8 typically), and
. When the parameters § and B are available from
analyses of neighboring peaks, they can be fixed to reduce
the number of fit parameters. The full energy peak
efficiency &(x) is obtained from a reference calibration
by defining the peak area comprised of Gaussian and tail
parts. In terms of the detector response adopted in
HYPERMET, g(x) is related to the Gaussian efficiency
€o(x) by [31]

22

e(x) = SG(x){l + 5’3’% exp(~ 4’;2 J} 23)

and Eq. (22) is simply reduced to I = Nygy, where g is
the full encrgy peak efficiency at x = 0. Hence, neglecting
the energy dependency of efficiency in the energy region
of the DB peak shows that I/g, is equal to the number of
gamma rays, No, emitted from the source. The area I in
Eq. (22) is, however, based on the approximation that the
full energy peak efficiency e(x) is equal to a constant, g,
in the DB peak region. In general, g(x) has a slight
dependency on x in the region [-Xm, +X.]. Given that it is
smooth on x, it could be approximated by a Taylor
expansion on x. Considering that the DB peak area is the
integration of the incident spectrum g(x) multiplied by g(x)
and that the spectrum g(x) is an even function of x, only
even power terms of x in the expansion of g(x) contribute
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to the area. As the zero-order term, g, has already been
considered, the next high-power term contributing to the
area is the second-order correction given by

a+lg, d'E

o =1 ﬁ
a+3 6 & |, 24

where g()_() is the normalized efficiency function of a
dimensionless unit x = x/x,. It is defined as

£x)

0

E(X)=

(25)

Eq. (24) shows that the correction term &7/1 is
proportional to & and is at most approximately 103~10"
for the boron DB peak in a typical germanium detector.
Hence, the energy variation of &(x) can be neglected in
the uncertainty of the fitted area.

When there is no interfering peak in the region of the
DB peak, the peak parameters and detector response
parameters are determined by least-squares fitting to the
measured counts. By denoting the parameters as the
vector p, the fit function is given by

Y =Y p) =Fa(x; p) + Fsi(x; p) + Hs(x; p) + he(x; p) - (26)

while up to six Gaussian G,(x)’s with the center of each
at x,, ;, the width §; taken to be equal to 8, and the height
H;, can be added to Y(x; p) when there is interference
with the DB peak. The p parameters are determined by
minimizing the x’-function defined similarly as it is in
the code HYPERMET [31]. The covariance matrix of
parameters is assigned by obtaining the inverse Hessian
matrix, which is given approximately as

-

l 6’212
2 0pop,

§j =

@n

where the Hessian matrix is calculated using the final
searched parameters [31]. Analytic expressions for the
gradient vector and Hessian matrix are derived through
tedious algebra. For terms with respect to the short-term
tail, numerical derivative and curvature are used instead
of an analytic formula due to the complication and slow
speed. The uncertainty or the standard deviation of the
determined parameter p; is then given by

o(p) =~y 1V, - (28)
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where xz’ is the reduced x*, the minimum x> value per
degree of freedom of the fit. The uncertainty of DB peak
area | is obtained through the propagation of the
uncertainties of the relevant parameters with covariances
taken into consideration. This is given as

[ a
ou):\,z;_%ﬁgg 29)

with p;, p; running on the searched parameters among
those appearing in Eq. (22). Developed DB analysis
algorithms and routines are incorporated in the
HyperGam package recently developed on an interactive
MS window platform [35].

3.5 Analysis of DB Peak Measured in the B(n, ay)'Li
Reaction

In Figure 2, the result of an example analysis is shown
for the DB peak that is emitted from the *B(n,ay)’Li
reaction induced by thermal neutron. The sample is boric
acid (H;BOs) prepared by drying a diluted aqueous
solution. The details of the experimental facility and
sample are available in the literature [27,36]. For peak
fitting, the Gaussian width parameter § is fixed by
considering the shape-energy dependency obtained from
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Fig. 2. Analysis of DB Spectrum for Boric Acid (H;BO;, B
Mass 17.6 pug). The Short Tail and Step-Background Parts are
Vanishingly Small but are Included in the Plot. The
Determined Values are a DB Peak Area I of 80,300 + 760 and
a Degradation Parameter @ of 7.16 + 0.21
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Table 2. The Degradation Constants D (ps’'} Obtained by Various Works on the Slowing Down of a ’Li lon in Boric Acid

(Polycrystalline HsBOs, Density 1.435 g/cm?)

Theoretical Experimental
LSS theory [20] SRIM [19] Sakai et al. [24] Szentmiklési et al. [29] This work
1.50 [24] 1.34 1.48 1.29 £0.01 1.17+0.03

Table 3. Comparison of the Boron Concentration of a Spinach Sample with the Values of a Previous Work and a Certified Value

Analyzed boron peak count Boron concentration [pg/g)
Sample Mass [mg]
rate [cps] This work Previous work [27] | Certified [38]
SRM 1570a spinach 1132 +£0.1 9.64+£0.27 373+1.1 352+1.0 376+1.0

analyzing the neighboring single energy peaks. The
maximum DB width, X, of the emitted spectrum is also
fixed to the physical value of 7.6 keV with a scale
conversion into the channel unit. Hence, parameters are
searched for the center and height of the DB peak,
degradation parameter o, the heights of the low-energy
tail and step-background, and the continuous linear
background including those for the interfering Gaussian
peaks. The heights of the low-energy tail A and step-
background S determined in the fit are very small in this
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Fig. 3. Decomposition of Boron and Sodium Peaks Measured
with a Spinach Sample
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measurement: A = 1 X107, § = 1 10. The background
peaks around the 552, 556, 558 and 568 channels are
trivial for obtaining the D-value but improve the fit. The
final reduced x* is 1.3. The required time to obtain this
result is approximately two minutes. The background
peaks are regarded to originate from the decay gamma
ray of 7Ge(475 keV) and the background gamma rays of
Li(n,y)'Li(478 keV), *Ge(n,y)*Ge(478, 482 keV), and
Ge(n,y)Ge(488 keV), respectively. The small
background peaks can, however, explain the unsmooth
feature on the top of the DB peak. In Table 2, the
obtained value of degradation constant D is compared
with other reference values which are based on either
theories or experiments. The D-value of the SRIM
calculation is obtained by fitting a line to the numerical
stopping power in the energy region of 90-600 keV.
Definite inconsistency is seen between different literature
values by considering the associated uncertainties. There
are differences in the analysis methods, detector response
functions and target material conditions in these
experimental works [24,29]. There are also interesting
studies to claim the chemical binding effect in the
stopping power of compounds, suggesting a deviation
from Bragg’s rule [5,6,37]. Therefore, a more detailed
discussion of this topic requires further research. Figure 3
shows decomposition of the DB boron peak and a
strongly interfering gamma ray peak (472 keV) emitted
from *Na capturing neutrons. The target sample is
spinach reference material (SRM 1570a) [38]. The same
measured spectrum reported in an earlier study [27] is re-
analyzed by the current algorithm developed in this
study. The new fit resulted in a D-value of 1.56+0.08 ps’
and a boron concentration of 37.3%+1.1 pg/g. The results
for the boron concentration are summarized in Table 3
for comparison with the value of the previous analysis
and a certified value [27,38]. Closer agreement with the
certified value was observed in the present analysis.
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4. CONCLUSION

The present work reviewed the DB emission line
shape for the most general description of the
phenomenological stopping power of the medium in
which the excited nucleus recoils and stops. Theoretical
line shape formulae are derived and indicate that the
dominant parameter governing the DB emission line
shape is the ratio A/A,. When both parameters, A and A,
are unknown and hence are determined by a fit to the
measured line shape, they can lead to ambiguous result.
For an analysis of the '°B DB peak induced by thermal
neutron capturing and measured by a germanium
detector, the DB emission line shape is greatly simplified
and the convolution of the emission line shape with the
detector response function is as a result achieved, bring
comprised of several analytic functions and a series sum.
Based on the analytic functions for the measured line
shapes of the '°B DB peak, algorithms for least-square
fitting to the measured spectrum are developed and
incorporated in HyperGam, a recent interactive software
package for gamma ray spectrum analysis. Using the
analytic form of line shape functions for the measured
spectrum, multiple parameters and their uncertainties
relating to the DB peak can be determined reliably at
higher speeds by a non-linear least-square fitting method.
In summary, the present work has shown that a faster and
routine analysis based on closed formulae has become
feasible for analysis of a boron DB peak whose shape is
strongly dependent on the sample medium. Information
on the stopping power of various sample media for
recoiling "Li can also be obtained from the routine
analysis. This is suggesting for advanced future works.

APPENDIX

A. The General DB 7-Line Shape

Using Eq. (9), the time t in Eq. (8) was obtained as a
function of the speeds v and v, previously. It is given by
[9,21]

0g 2V/ve)
Z’s ¢(V0/V/;)
K—-K +2K.x°
)=t K
K+K,-2K;x
2K
My ‘

=

JK:+4K K.,

It

and ,1‘\_ = (A-l)

When the straightforward inversion of v(t) from Eq.
(A-1) is substituted in Eq. (7), the integration is not
simple. However, it can be shown that the solution is
obtained in terms of a special function, as
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where p=A/A,, 8 0= ¢ (Vo/Vs), ¢ .= $ (eVo/vs), and Fi[a;
b,b'; ¢; x, y] is an Appell function of the first kind which
is defined for all real or complex values of a, b, b', ¢, x,
and y [22]. One expression of the Appell function Fi[a;
b,b'; ¢; X, v}, is given by an infinite series, as

Fla;b,bc;x,y] = zz(a)m 0 (00 (0 m 5

s ()., min!

(A-3)

where (@) =1, (@)1 =a, (a)a=a(at+1)at2)...(a+n-1), ... .
The calculation of the Appell function in Eq. (A-2) is not
trivial and is limited in comparison with the direct
numerical integration of Eq. (7). Hence, more work is
required for its practical use in parametric fitting as an
analysis of line shapes. Nevertheless, it is suitable for
checking the analytic properties of the solution. One
example calculation of Eq. (A-2) is possible when using
a mathematics package [23] and is shown in Figure A-1
for the three cases of /A, = 0.32, 3.2, and 28.8. The jump
at ¢ = 0 (dn/de = 0.38) for A/A; = 0.32 is due to the
stationary decay described by Eq. (A-4). For A/A,=3.2 or
28.8, the stationary decay part of the lines is negligible.
Inspection of Eq. (A-2) indicates that for a given
value of m, the parameters governing the line shape are
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Fig. A-1. Line Shapes for m=0 Calculated by Eq. (A-2) are
Shown for the Cases of A/As = 0.32 (Black), 3.2 (Gray) and
28.8 (Light Gray). The Parameters used for Continuous Lines
are K. = 1, Kn = 0.05, K5 = 0.03, and vo/vs = 2.1. The Dashed
Curves used Identical Parameters Except Ke = 1.3 for Each
Line
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AlAs, Ki/Ke, Ko/K., and vo/vg. Figure A-1 shows, however,
that the line shape is dominated by the magnitude of the
ratio of A/A,.. As the ratio of A//; increases, more nuclei
decay before slowing down, resulting in a closer rectangular
shape. In addition, Figure A-1 shows that even a 30%
increase in K. does not produce a significant difference
in the line shape and magnitude once the ratio of /A, is
fixed. This indicates that an analysis of the line shape
leads primarily to determining the ratio A/A;. Therefore,
use of the correct magnitude of A or A; is required for an
unambiguous determination of the other parameter, as it
is the ratio A/As which is mainly determined by fitting the
line shape to the measured spectrum.

If the nuclear lifetime 7(=1/2) is comparable to or
larger than the characteristic slowing down time 7,(=1/,),
the fraction of excited nuclei which decay after a full stop
is non-negligible. The line shape portion of this stationary
decay is described by the delta function Nof; d(), with

S = f] 2exp-andr = [i X ‘Kfj (A4)

4 K+K,

where T; is the time of the full stop and is obtained from
Eq. (A-1) with v(T;) = 0. The decay portion in the
slowing down is given by Egs. (7), (A-2) and (A-4) with
No replaced with (1-f;)Np.

When the K; term is not important, the first two
terms (electronic and nuclear stoppings) in Eq. (9) are
used for Eq. (8) and the solution for time t was given by
Pratt [18]. It is rewritten here with the present notation as

_1_10 y(v/vy)

» o w(x)=(K,/K)+x°
/’is ‘/I(VO /VB)

t=- (A-5)

where A is identical to that in Eq. (A-1) with K reduced
to K.. By obtaining v(t), the integration in Eq. (7) can
also be performed to give

BRSPS I £
1-m Ay wo\ v, e T Ny, Vg

et | 21 .
—{QL’) le| ™, F| 1,1~ p; 22 —(ﬂ]
Yo Ve\Vs

(even-m) (A-6)

where p= A/, do=¢(vo/Vs), ¢-=¢(evo/vs), and ,F[a, b;
¢c; z] is a hypergeometric function also known as the
Kummer series or Gauss series [22,33]. A solution for
odd-m is relevant only in experiments using a polarized
beam [17,18]. It can be obtained from the general
solution Eq. (A-2) but it is not directly relevant to this
study and is therefore omitted. In some reactions, such as
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a "B(n,a7)’Li reaction induced by thermal neutron,
simpler treatment of the stopping power is feasible by
neglecting both the high-velocity term and nuclear
stopping power (K;,K,—0) [3-6]. The corresponding
solution for no angular correlation (m=0) can be obtained
from Egs. (7) ~ (9) by a trivial integration [3,4,18] and is
given by Eq. (10). Eq. (10) is also obtained from Eq. (A-
6) using the properties of hypergeometric functions,
which indicates the theoretical consistency of Egs. (A-2),
(A-6) and (10).

B. Convolution of the Step-Background Function

The convolution integral between the source line
shape and the step-background in Eq. (19) is given by a
combination of analytic functions and convergent series as

Hy()= [ g0 hye~y)dy = [ g hy(e— yMdy = HY" (5 + HE ()

- SN &g (l+-l—) xX+Xx, erfc(x+x"’ )_ X=X, erfc(x_x”’ )+
45\/;k af x, I X, o

o

o _(x-x,) N (x#x,) N
el O el

_SNogg —1-—[2 + erfc( Y

+x)—erfc(x’" —xj__
45Jr a o o

a+l I3 ”

2 Yo X o+ s a 3 x:

e - e — | P —+-+k 2
v”exp( Uz)(x,nj (a]( 2 )k:ock(ozj (2 2 U’H

(B-1)
where the coefficient ¢, is given as
k
2 Tla+2r+1)
= k20. -
G k+ D) (B-2)
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