DOI QR코드

DOI QR Code

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Nikiforova, Anna (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Yip, Sidney (Department of Nuclear Science and Engineering and Department of Materials Science and Engineering Massachusetts Institute of Technology)
  • Published : 2009.02.28

Abstract

The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

Keywords

References

  1. Y. Gu$\acute{e}$rin, G. S. Was, S. J. Zinkle, “Materials Challenges for Advanced Nuclear Energy Systems”, MRS Bulletin, 34, 1, pp. 10-19 (2009)
  2. D. Petti, D. Crawford, N. Chauvin, “Fuels for Advanced Nuclear Energy Systems”, MRS Bulletin, 34, 1, pp. 40-45 (2009) https://doi.org/10.1557/mrs2009.11
  3. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, S. Ukai, “Advanced Structural Materials and Cladding”, MRS Bulletin, 34, 1, pp. 20-27 (2009) https://doi.org/10.1557/mrs2009.8
  4. J-P. Bonal, A. Kohyama, Jaap van der Laan, L. Snead, “Graphite, Ceramics, and Ceramic Composites for High- Temperature Nuclear Power Systems”, MRS Bulletin, 34, 1, pp. 28-34 (2009) https://doi.org/10.1557/mrs2009.9
  5. C. Cabet, J. Jang, J. Konys, P.F. Tortorelli, “Environmental Degradation of Materials in Advanced Reactors”, MRS Bulletin, 34, 1, pp. 35-39 (2009) https://doi.org/10.1557/mrs2009.10
  6. W. Weber, A. Navrotsky, S. Stefanovsky, E. Vance, E. Vernaz, “Materials Science of High-Level Nuclear Waste Immobilization”, MRS Bulletin, 34, 1, pp. 46-53 (2009) https://doi.org/10.1557/mrs2009.12
  7. M. F. Toney, A. J. Davenport, L. J. Oblonsky, M. Ryan, and C. M. Vitus, “Atomic Structure of the Passive Oxide Film Formed on Iron”, Phys. Rev. Lett., 79, 21, pp. 4282 - 4285 (1997) https://doi.org/10.1103/PhysRevLett.79.4282
  8. M. P. Ryan, R. C. Newman, and G. E. J. Thompson, "An STM Study of the Passive Film Formed on Iron in Borate Buffer Solution", Electrochem. Soc., 142, 10, p. L177-L179 (1995) https://doi.org/10.1149/1.2050035
  9. NSF Report, Simulation-Based Engineering Science, (2006)
  10. DOE-Basic Energy Sciences Workshop Report, Basic Research Needs for Advanced Nuclear Energy Systems, (2006)
  11. J. J. dePablo and W. A. Curtin, “Multiscale Modeling in Advanced Materials Research: Challenges, Novel Methods, and Emerging Applications”, MRS Bulletin, 32, 11, pp. 905-911 (2007) https://doi.org/10.1557/mrs2007.187
  12. S. Yip, “Synergistic science”, Nature, 2, pp. 3-5 (2003) https://doi.org/10.1038/nmat778
  13. S. Yip, ed. Handbook of Material Modeling. Springer (2005)
  14. R. Najafabadi and S. Yip, “Observation of finite-temperature bain transformation (f.c.c. to r b.c.c.) in Monte Carlo simulation of iron”, Scripta Metall, 17, 10, pp. 1199-1204 (1983) https://doi.org/10.1016/0036-9748(83)90283-1
  15. K. S. Cheung, R. J. Harrison, S. Yip, “Stress induced martensitic transition in a molecular dynamics model of alpha-iron”, J. Appl. Phys., 71, 8, pp. 4009-4014 (1992) https://doi.org/10.1063/1.350846
  16. B. deCelis, A. S. Argon, S. Yip, “Molecular dynamics simulation of crack tip processes in alpha-iron and copper”, J. Appl. Phys., 54, 9, p. 4864 (1983) https://doi.org/10.1063/1.332796
  17. K. S. Cheung and S. Yip, 'Brittle-ductile transition in intrinsic fracture behavior of crystals', Phys. Rev. Lett., 65, 22, pp. 2804 - 2807 (1990) https://doi.org/10.1103/PhysRevLett.65.2804
  18. K. S. Cheung, A. S. Argon, S. Yip, “Activation analysis of dislocation nucleation from crack tip in alpha-Fe”, J. Appl. Phys., 69, 4, pp. 2088-2096 (1991) https://doi.org/10.1063/1.348735
  19. K. S. Cheung and S. Yip, “A molecular-dynamics simulation of crack-tip extension: The brittle-to-ductile transition”, Modell. Simul. Mater. Sci. Eng., 2, pp. 865-892 (1994) https://doi.org/10.1088/0965-0393/2/4/005
  20. T. Kwok, P. S. Ho, S. Yip, “Molecular-dynamics studies of grain-boundary diffusion. I. Structural properties and mobility of point defects”, Phys. Rev. B, 29, 10, pp. 5354 - 5362 (1984a) https://doi.org/10.1103/PhysRevB.29.5354
  21. T. Kwok, P. S. Ho, S. Yip, 'Molecular-dynamics studies of grain-boundary diffusion. II. Vacancy migration, diffusion mechanism, and kinetics', Phys. Rev. B, 29, 10, pp. 5363 - 5371 (1984b) https://doi.org/10.1103/PhysRevB.29.5363
  22. C. J. F$\ddot{o}$rst, J. Slycke, K. J. Van Vliet, S. Yip, “Point Defect Concentrations in Metastable Fe-C Alloys”, Phys. Rev. Lett., 96, 175501, pp. 1-4 (2006) https://doi.org/10.1103/PhysRevLett.96.175501
  23. T. T. Lau, C. J. Foerst, J. D. Gale, S. Yip, K. J. Van Vliet, “Many-Body Potential for Point Defect Clusters in Fe-C Alloys”, Phys. Rev. Lett., 98, 215501, pp. 1-4 (2007) https://doi.org/10.1103/PhysRevLett.98.215501
  24. J. Li, “The Mechanics and Physics of Defect Nucleation”, MRS Bulletin, 32, pp. 151-159 (2007) https://doi.org/10.1557/mrs2007.48
  25. M. Born, “On the stability of crystal lattices. I”, Cambridge Philos. Soc., 36, 2, pp. 160-172 (1940) https://doi.org/10.1017/S0305004100017138
  26. M.Born and K. Huang. Dynamical theory of Crystal Lattices. Clarendon, Oxford (1956)
  27. R. Hill, “On the elasticity and stability of perfect crystals at finite strain”, Math. Proc. Camb. Phil. Soc., 77, 1, p. 225 (1975) https://doi.org/10.1017/S0305004100049549
  28. R. Hill and F. Milstein, “Principles of stability analysis of ideal crystals”, Phys. Rev. B, 15, 6, pp. 3087 - 3096 (1977) https://doi.org/10.1103/PhysRevB.15.3087
  29. J. Wang, J., Li, S. Yip, S. Phillpot, D. Wolf, “Mechanical instabilities of homogeneous crystals”, Phys. Rev. B, 52, 17, pp. 12627 - 12635 (1995) https://doi.org/10.1103/PhysRevB.52.12627
  30. Z. Zhou and B. Joos, “Stability criteria for homogeneously stressed materials and the calculation of elastic constants”, Phys. Rev. B, 54, 6, pp. 3841 - 3850 (1996) https://doi.org/10.1103/PhysRevB.54.3841
  31. J. W. Morris and C. R. Krenn, “The internal stability of an elastic solid”, Philos Mag. A, 80, 12, pp. 2827-2840 (2000) https://doi.org/10.1080/01418610008223897
  32. D. Roundy, C. R. Krenn, L. Cohen Marvin, J. W. Morris Jr., “Ideal Shear Strengths of fcc Aluminum and Copper”, Phys. Rev. Lett., 82, 13, pp. 2713-2716 (1999) https://doi.org/10.1103/PhysRevLett.82.2713
  33. S. Ogata , J. Li, S. Yip, “Ideal Pure Shear Strength of Aluminum and Copper”, Science, 298, pp. 807-811 (2002) https://doi.org/10.1126/science.1076652
  34. T. H. K. Barron and M. L. Klein, “Second-order elastic constants of a solid under stress”, Proc. Phys. Soc., 85, pp. 523-532 (1965) https://doi.org/10.1088/0370-1328/85/3/313
  35. W. G. Hoover, A. C. Holt, D. R. Squire, “Adiabatic elastic constants for argon. theory and Monte Carlo calculations”, Physica, 44, 3, pp. 437-443 (1969) https://doi.org/10.1016/0031-8914(69)90217-1
  36. Z. S. Basinski, M. S. Duesbery, A. P. Pogany, R. Taylor, Y. P. Varshni, “An effective ion-ion potential for sodium”, Can. J. Phys., 48, pp. 1480-1489 (1970) https://doi.org/10.1139/p70-187
  37. J. Wang, S. Yip, S. Phillpot, D. Wolf, “Crystal instabilities at finite strain”, Phys. Rev. Lett., 71, 25, pp. 4182 - 4185 (1993) https://doi.org/10.1103/PhysRevLett.71.4182
  38. K. Mizushima, S. Yip, E. Kaxiras, “Ideal crystal stability and pressure-induced phase transition in silicon”, Phys. Rev. B, 50, 20, pp. 14952 - 14959 (1994) https://doi.org/10.1103/PhysRevB.50.14952
  39. M. Tang and S. Yip, “Lattice instability in -SiC and simulation of brittle fracture”, J. Appl. Phys., 76, 5, pp. 2719- 2725 (1994) https://doi.org/10.1063/1.357575
  40. F. Cleri, J. Wang, S. Yip, “Lattice instability analysis of a prototype intermetallic system under stress”, J. Appl. Phys., 77, 4, p. 1449 (1995) https://doi.org/10.1063/1.359577
  41. M. Tang and S. Yip, 'Atomic Size Effects in Pressure- Induced Amorphization of a Binary Covalent Lattice', Phys. Rev. Lett., 75, 14, pp. 2738 - 2741 (1995) https://doi.org/10.1103/PhysRevLett.75.2738
  42. J. Li and S. Yip, “Atomistic Measures of Materials Strength”, Computer Modelling in Engineering and Sciences, 3, 2, pp. 219-227 (2002)
  43. J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B, 39, 8, pp. 5566 - 5568 (1989) https://doi.org/10.1103/PhysRevB.39.5566
  44. J. Li, Ph.D. Thesis, MIT, (2000)
  45. F. Cleri, S. Yip, D. Wolf, S. Phillpot, “Atomic-Scale Mechanism of Crack-Tip Plasticity: Dislocation Nucleation and Crack-Tip Shielding”, Phys. Rev. Lett., 79, 7, pp. 1309 - 1312 (1997) https://doi.org/10.1103/PhysRevLett.79.1309
  46. H. Jonsson, G. Mills, K. W. Jacobsen. Classical and Quantum Dynamics in Condensed Phase Simulations. Plenum Press, New York, p.385 (1998)
  47. T. Zhu, J. Li, S. Yip, “Atomistic Study of Dislocation Loop Emission from a Crack Tip”, Phys. Rev. Lett., 93, 025503, pp. 1-4 (2004) https://doi.org/10.1103/PhysRevLett.93.025503
  48. T. Zhu, J. Li, S. Yip, “Atomistic Configurations and Energetics of Crack Extension in Silicon”, Phys. Rev. Lett., 93, 205504, pp. 1-4 (2004) https://doi.org/10.1103/PhysRevLett.93.205504
  49. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress, “Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations”, Phys. Rev. B, 63, 224106, pp. 1-16 (2001) https://doi.org/10.1103/PhysRevB.63.224106
  50. F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31, 8, pp. 5262-5271 (1985) https://doi.org/10.1103/PhysRevB.31.5262
  51. J. R. Rice, “Dislocation nucleation from a crack tip: An analysis based on the Peierls concept”, J. Mech. Phys. Solids, 40, 2, pp. 239-271 (1992) https://doi.org/10.1016/S0022-5096(05)80012-2
  52. G. Xu, A. S. Argon, M. Ortiz, “Critical configurations for dislocation nucleation from crack tips”, Philos. Mag. A, 75, 2, pp. 341-367 (1997) https://doi.org/10.1080/01418619708205146
  53. A. N. Stroh, “Dislocations and cracks in anisotropic elasticity,” Philos. Mag., 7, p. 625 (1958) https://doi.org/10.1080/14786435808565804
  54. H.-L. Sit, M. Cococcioni, and N. Marzari, “Realistic Quantitative Descriptions of Electron Transfer Reactions: Diabatic Free-Energy Surfaces from First-Principles Molecular Dynamics”, Phys. Rev. Lett., 97, 028303, pp. 1- 4 (2006) https://doi.org/10.1103/PhysRevLett.97.028303
  55. H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, “Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach”, Phys. Rev. Lett., 97, 103001, pp. 1-4 (2006) https://doi.org/10.1103/PhysRevLett.97.103001
  56. D. A. Scherlis, J.-L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari, “A unified electrostatic and cavitation model for first-principles molecular dynamics in solution”, J. Chem. Phys., 124, 074103, pp. 1-12 (2006) https://doi.org/10.1063/1.2168456
  57. S. C. Hendy, N. J. Laycock, M. P. Ryan, and B. E. Walker, “Ab initio studies of the passive film formed on iron”, Phys. Rev. B, 67, 085407, pp. 1-10 (2003) https://doi.org/10.1103/PhysRevB.67.085407
  58. S. C. Hendy, N. J. Laycock, and M. P. Ryan, “Atomistic Modeling of Cation Transport in the Passive Film on Iron and Implications for Models of Growth Kinetics”, J. Electrochem. Soc., 152, 8, p. B271-B276 (2005) https://doi.org/10.1149/1.1940787
  59. N. Cabrera and N. F. Mott, 'Theory of the oxidation of metals', Rep. Prog. Phys., 12, pp. 163-184 (1948/1949) https://doi.org/10.1088/0034-4885/12/1/308
  60. V. S. Battaglia and J. Newman, “Modeling of a Growing Oxide Film: The Iron/Iron Oxide System”, J. Electrochem. Soc., 142, 5, pp. 1423-1430 (1995) https://doi.org/10.1149/1.2048591
  61. D. D. MacDonald, “Passivity - the key to our metals-based civilization”, Pure and Applied Chemistry, 71, 6, p. 951 (1999) https://doi.org/10.1351/pac199971060951
  62. C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions”, Nature, 423, pp. 626 - 628 (2003) https://doi.org/10.1038/nature01665
  63. QuantumEspresso. http://www.quantum-espresso.org/
  64. Y. Tanaka et al., “A study on the Fermi surface of Cr by high-resolution Compton scattering”, Journal of Physics and Chemistry of Solids, 61, 3, pp. 365-367 (2000) https://doi.org/10.1016/S0022-3697(99)00318-2
  65. V. Maurice, G. Despert, S. Zanna, M. P. Bacos, and P. Marcus, “Self-assembling of atomic vacancies at an oxide/intermetallic alloy interface”, Nature Materials, 3, pp. 687-691 (2004) https://doi.org/10.1038/nmat1203
  66. G. S. Frankel, “Pitting Corrosion of Metals”, J. Electrochem. Soc., 145, 6, pp. 2186-2198 (1998) https://doi.org/10.1149/1.1838615
  67. M. P. Ryan, D. E. Williams, R. J. Chater, B. M. Hutton, and D. S. McPhail, “Why stainless steel corrodes”, Nature, 415, 2, pp. 770 - 774 (2002) https://doi.org/10.1038/415770a
  68. C. Punckt, M. Bölscher, H. H. Rotermund, A. S. Mikhailov, L. Organ, N. Budiansky, J. R. Scully, and J. L. Hudson, “Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon”, Science, 305, pp. 1133-1136 (2004) https://doi.org/10.1126/science.1101358
  69. F. Shimizu, S. Ogata and J. Li, “Yield point of metallic glass”, Acta Mater., 54, 16, pp. 4293-4298 (2006) https://doi.org/10.1016/j.actamat.2006.05.024
  70. T. Zhu, J. Li, K. J. Van Vliet, S. Ogata, S. Yip, S. Suresh, “Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper”, J. Mech. Phys Solids, 52, 3, pp. 691-724 (2004) https://doi.org/10.1016/j.jmps.2003.07.006
  71. T. Zhu, J. Li, A. Samanta, H. G. Kim, S. Suresh, “Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals”, Proc. Nat. Acad. Sci, 104, 9, pp. 3031-3036 (2007) https://doi.org/10.1073/pnas.0611097104
  72. D. E. Williams, R. C. Newman, Q. Song, R. G. Kelly, “Passivity breakdown and pitting corrosion of binary alloys”, Nature, 350, 1, pp. 216 - 219 (1991) https://doi.org/10.1038/350216a0
  73. S. N. Rashkeev, K.W. Sohlberg, S. Zhuo, S. T. Pantelides, 'Hydrogen-Induced Initiation of Corrosion in Aluminum', J. Phys. Chem. C, 111, 19, pp. 7175-7178 (2007) https://doi.org/10.1021/jp0707687
  74. S. M. Bruemmer, G.S. Was, “Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems”, Journal of Nuclear Materials, 216, pp. 348-363 (1994) https://doi.org/10.1016/0022-3115(94)90020-5
  75. G.S. Was, B.Alexandreanu, P. Andresen, and M. Kumar, Mat. Res. Soc. Symp. Proc. 819, N2.1.1 (2004, “Role of Coincident Site Lattice Boundaries in Creep and Stress Corrosion Cracking”, Mat. Res. Soc. Symp. Proc., 819, p. N2.1.1 (2004)
  76. S.M. Bruemmer, “Linking Grain Boundary Structure and Composition to Intergranular Stress Corrosion Cracking of Austenitic Stainless Steels”, MRS Symposium Proceedings, 819, 2.2.1, pp. 1-10 (2004)
  77. S. Teysseyre, and G.S. Was, “Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water”, Corrosion, 62, 12, pp. 1100-1116 (2006) https://doi.org/10.5006/1.3278244
  78. B. Alexandreanu, B.H. Sencer, V. Thaveeprunsriporn, G.S. Was, "The effect of grain boundary character distribution on the high temperature deformation behavior of Ni-16Cr- 9Fe alloys", Acta Materialia, 51, 13, pp. 3831-3848 (2003) https://doi.org/10.1016/S1359-6454(03)00207-6
  79. D.N. Seidman, “Subnanoscale studies of segregation at grain boundaries: Simulations and Experiments”, Annu. Rev. Mater. Sci., 32, pp. 235-269 (2002) https://doi.org/10.1146/annurev.matsci.32.011602.095455
  80. D. Wolf. in Handbook of Material Modeling, sec. 6.9 Springer (2005)
  81. A. P. Sutton and R. W. Balluffi. Interfaces in Crystalline Materials. Oxford University Press, Oxford (1995)
  82. M. Ropo, K. Kokko, M. P. J. Punkkinen, S. Hogmark, J. Kollár, B. Johansson, L. Vitos, “Theoretical evidence of the compositional threshold behavior of FeCr surfaces”, Phys. Rev. B, 76, 220401, pp. 1-4 (2007) https://doi.org/10.1103/PhysRevB.76.220401
  83. L. Vitos, I. A. Abrikosov, and B. Johansson, “Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory”, Phys. Rev. Lett., 87, 156401, pp. 1-4 (2001) https://doi.org/10.1103/PhysRevLett.87.156401
  84. P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Physical Review, 136, 3B, pp. 864-871 (1964) https://doi.org/10.1103/PhysRev.136.B864
  85. J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77, 18, pp. 3865 - 3868 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  86. L. Dubrovinsky et al., “Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle”, Nature (London), 422, pp. 58-61 (2003) https://doi.org/10.1038/nature01422
  87. M. Ald$\acute{e}$n, H. L. Skriver, S. Mirbt, B. Johansson, “Surface energy and magnetism of the 3d metals”, Surface Science, 315, 1-2, pp. 157-172 (1994) https://doi.org/10.1016/0039-6028(94)90551-7
  88. N. Kumar Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, “Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces”, Corrosion Science, 50, 6, pp. 1701-1706 (2008) https://doi.org/10.1016/j.corsci.2008.01.032
  89. A. Ramasubramaniam, E. Carter, "Coupled Quantum- Atomistic and Quantum-Continuum Mechanics Methods in Materials Research", MRS Bulletin, 32, pp. 913-918 (2007) https://doi.org/10.1557/mrs2007.188
  90. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, “ReaxFF: A Reactive Force Field for Hydrocarbons”, J. Phys. Chem. A, 105, 41, p. 9396-9409 (2001) https://doi.org/10.1021/jp004368u
  91. A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, “ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems”, J. Phys. Chem A, 107, 19, pp. 3803-3811 (2003) https://doi.org/10.1021/jp0276303
  92. M. J. Buehler, A. C. T. van Duin,W. A. Goddard, “Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field”, Phy. Rev. Lett., 96, 095505, pp. 1-4 (2006) https://doi.org/10.1103/PhysRevLett.96.095505
  93. A. Caro, D. A. Crowson, M. Caro, “Classical Many-Body Potential for Concentrated Alloys and the Inversion of Order in Iron-Chromium Alloys”, Phys. Rev. Lett., 95, 075702, pp. 1-4 (2005) https://doi.org/10.1103/PhysRevLett.95.075702
  94. P. Erhart, B. Sadigh, A. Caro, “Are there stable long-range ordered Fe1-xCrx compounds?”, Appl. Phys. Lett., 92, 141904, pp. 1-3 (2008) https://doi.org/10.1063/1.2907337
  95. L. Malerba, A. Caro, J. Wallenius, “Multiscale modelling of radiation damage and phase transformations: The challenge of FeCr alloys”, J. Nuc. Matls, accepted, (2008) https://doi.org/10.1016/j.jnucmat.2008.08.014
  96. A. Yilmazbayhan, E. Breval, A. T. Motta, R.J. Comstock, "Transmission electron microscopy examination of oxide layers formed on Zr alloys", J. Nuc. Matls, 349, 3, pp. 265-281 (2006) https://doi.org/10.1016/j.jnucmat.2005.10.012
  97. Y. Fujii, E. Yanase, K. Arai, "Depth profiling of the strain distribution in the surface layer using X-ray diffraction at small glancing angle of incidence", Appl. Surf. Sci., 244, 1- 4, p. 230 (2005) https://doi.org/10.1016/j.apsusc.2004.09.166
  98. A. Yilmazbayhan, A. T. Motta, R J. Comstock, G. P. Sabol, B. Lai, Z. Cai, “Structure of zirconium alloy oxides formed in pure water studied with synchrotron radiation and optical microscopy: relation to corrosion rate”, J. Nuc. Matls., 324, 1, pp. 6-22 (2004) https://doi.org/10.1016/j.jnucmat.2003.08.038
  99. M. Yamashita, H. Konishi, J. Mizuki, et al., “Nanostructure of Protective Rust Layer on Weathering Steel Examined Using Synchrotron Radiation X-rays”, Materials Trans., 45, 6, pp. 1920-1924 (2004) https://doi.org/10.2320/matertrans.45.1920
  100. M. Yamashita, H. Konishi, T. Kozakura, et al., “In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays”, Corrosion Science, 47, 10, pp. 2492-2498 (2005) https://doi.org/10.1016/j.corsci.2004.10.021
  101. S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, “X-ray and neutron scattering from rough surfaces”, Phys. Rev. B, 38, 4, pp. 2297 - 2311 (1988) https://doi.org/10.1103/PhysRevB.38.2297
  102. H. You, C.A. Melendres, Z. Nagy, V.A. Maroni, W. Yun, R.M. Yonco, “X-ray-reflectivity study of the copper-water interface in a transmission geometry under in situ electrochemical control”, Phys. Rev. B, 45, 19, pp. 11288 - 11298 (1992) https://doi.org/10.1103/PhysRevB.45.11288
  103. Y.P. Feng, S.K. Sinha, C.A. Melendres, D.D. Lee, “X-ray off-specular reflectivity studies of electrochemical pitting of Cu surfaces in sodium bicarbonate solution”, Physica B 221 p. 251 (1996, 221, 1-4, pp. 251-256 (1996) https://doi.org/10.1016/0921-4526(95)00934-5
  104. H. You, Z. Nagy, and K. Huang, “X-Ray Scattering Study of Porous Silicon Growth during Anodic Dissolution”, Phys. Rev. Lett., 78, 7, pp. 1367 - 1370 (1997) https://doi.org/10.1103/PhysRevLett.78.1367
  105. P.F. Fewster, N.L. Andrew, V. Holy, K. Barmak, “X-ray diffraction from polycrystalline multilayers in grazingincidence geometry: Measurement of crystallite size depth distribution”, Phys. Rev. B, 72, 174105, pp. 1-11 (2005) https://doi.org/10.1103/PhysRevB.72.174105
  106. S. Sembiring, B. O'Connor, D. Li, A. van Riessen, C. Buckley, I. Low, R. De Marco, “Advances in X-ray Analysis”, Proceedings of the Denver X-ray Conference, 43, (1999)
  107. D. H. Kim, H. H. Lee, S. S. Kim, H. C. Kang, D. Y. Noh, H. Kim, S. K. Sinha, “Chemical depth profile of passive oxide on stainless steel”, Appl. Phys. Lett., 85, 26, pp. 6427-6429 (2004) https://doi.org/10.1063/1.1842362
  108. J.J. Rehr, R.C. Albers, “Theoretical approaches to x-ray absorption fine structure”, Rev. Mod. Phys., 72, 3, pp. 621 - 654 (2000) https://doi.org/10.1103/RevModPhys.72.621
  109. B. Yildiz, K.-C. C. Chang, H. You, D. Miller, H. Bearat, and M. McKelvy, 212th Meeting of the Electrochemical Society, Washington, DC (2007)
  110. J. Diefenbacher, M. McKelvy, A.V.G. Chizmeshya, G.H. Wolf, “Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions”, Rev. Sci. Inst., 76, 1, pp. 015103-015101 (2005) https://doi.org/10.1063/1.1831254
  111. C.T. Fujii, R.A. Meussner, “The Mechanism of the High- Temperature Oxidation of Iron-Chromium Alloys in Water Vapor”, J. Electrochem. Soc., 111, pp. 1215-1221 (1964) https://doi.org/10.1149/1.2425963
  112. L.B. Kriksunov, D.D. Macdonald, “Corrosion in Supercritical Water Oxidation Systems: A Phenomenological Analysis”, J. Electrochem. Soc., 142, p. 4069 (1995) https://doi.org/10.1149/1.2048464
  113. C.-M. Liao, J.M. Olive, M. Gao, R.P. Wei, “In-Situ Monitoring of Pitting Corrosion in Aluminum Alloy 2024”, Corrosion, 54, 6, p. 451-458 (1998) https://doi.org/10.5006/1.3284873
  114. F. A. Martin, C. Bataillon, J. Cousty, “In situ AFM detection of pit onset location on a 304L stainless steel”, Corrosion Science, 50, 1, pp. 84-92 (2008) https://doi.org/10.1016/j.corsci.2007.06.023
  115. E. Park, B. Huning, S. Borodin, M. Rohwerder, and M. Spiegel, “Initial oxidation of Fe-Cr alloys: in situ STM and ex situ SEM observation”, Materials at High Temperatures, 22, 3/4, pp. 567-573 (2005) https://doi.org/10.3184/096034005782744344
  116. T. Zhu, J. Li, S. Yip, “Nanomechanics of Crack Front Mobility”, J. Appl. Mech., 72, 6, pp. 932-935 (2005) https://doi.org/10.1115/1.2047607