DOI QR코드

DOI QR Code

NUCLEAR ENERGY MATERIALS PREDICTION: APPLICATION OF THE MULTI-SCALE MODELLING PARADIGM

  • Samaras, Maria (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Victoria, Maximo (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute) ;
  • Hoffelner, Wolfgang (High Temperature Materials, Laboratory of Nuclear Materials, Nuclear Energy and Safety, Paul Scherrer Institute)
  • 발행 : 2009.02.28

초록

The safe and reliable performance of fusion and fission plants depends on the choice of suitable materials and an assessment of long-term materials degradation. These materials are degraded by their exposure to extreme conditions; it is necessary, therefore, to address the issue of long-term damage evolution of materials under service exposure in advanced plants. The empirical approach to the study of structural materials and fuels is reaching its limit when used to define and extrapolate new materials, new environments, or new operating conditions due to a lack of knowledge of the basic principles and mechanisms present. Materials designed for future Gen IV systems require significant innovation for the new environments that the materials will be exposed to. Thus, it is a challenge to understand the materials more precisely and to go far beyond the current empirical design methodology. Breakthrough technology is being achieved with the incorporation in design codes of a fundamental understanding of the properties of materials. This paper discusses the multi-scale, multi-code computations and multi-dimensional modelling undertaken to understand the mechanical properties of these materials. Such an approach is envisaged to probe beyond currently possible approaches to become a predictive tool in estimating the mechanical properties and lifetimes of materials.

키워드

참고문헌

  1. T. Allen, H. Burlet, R.K. Nanstad, M. Samaras, S. Ukai, MRS Bulletin 34, 20 (2009) https://doi.org/10.1557/mrs2009.8
  2. http://www.gen-4.org/PDFs/GenIVRoadmap.pdf
  3. ASME Boiler & Pressure Vessel Code, Section III, ASME BPVC (2007)
  4. RCC-MR code, AFCEN (2007)
  5. M. Samaras, W. Hoffelner, M. Victoria, J. of Nucl. Mater. 371, 28 (2007); M. Samaras, W. Hoffelner, C.-C. Fu, M. Guttmann, R. E. Stoller, ICAPP 2007 proceedings; Revue G$\acute{e}$n$\acute{e}$rale Nucl$\acute{e}$aire, SFEN, France https://doi.org/10.1016/j.jnucmat.2007.05.026
  6. M. Samaras, M. Victoria, Mat. Today 11, 54 (2008) https://doi.org/10.1016/S1369-7021(08)70253-0
  7. M. Samaras, M. Victoria, W. Hoffelner, ‘E.U. Advanced Materials Modeling Perspectives’, accepted J. Nucl. Mater. (2008)
  8. www.fp6perfect.net/perfect
  9. M. Victoria, et al., O1B-I-28, SOFT, Fusion Engineering and Design, 82, 2413 (2007) https://doi.org/10.1016/j.fusengdes.2007.05.079
  10. http://www.nea.fr/html/science/struct_mater/Presentations/ZINKLE.pdf
  11. http://www.nea.fr/html/science/struct_mater/Presentations/CARRE.pdf
  12. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307-311, 749 (2002) https://doi.org/10.1016/S0022-3115(02)01043-7
  13. J. Wunder, PhD thesis ‘Mikrostrukturelle Beschreibung der Warmfestigkeit ferritischer Superlegierungen’, Friedrich- Alexander Universit$\ddot{a}$t, Erlangen-N$\ddot{u}$rnberg, Germany, (1994)
  14. G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008) https://doi.org/10.1146/annurev.matsci.38.060407.130315
  15. C. C . Fu, F. Willaime, C. R. Physique 9, 335 (2008) https://doi.org/10.1016/j.crhy.2007.09.018
  16. C. Domain, C. S. Becquart, J. Foct, Phys. Rev. B 69, 144112 (2004) https://doi.org/10.1103/PhysRevB.69.144112
  17. C.S. Becquart, J.M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H. Nguyen, Comp. Mater. Sci. 40,119 (2007) https://doi.org/10.1016/j.commatsci.2006.11.005
  18. http://homepages.ed.ac.uk/graeme/moldy/moldy.html
  19. C. C. Fu, F. Willaime, P. Ordejon, Phys. Rev. Lett. 92, 175503 (2004) https://doi.org/10.1103/PhysRevLett.92.175503
  20. D. Nguyen, et al., Phys. Rev. B (2006) 73, 020101 (2006) https://doi.org/10.1103/PhysRevB.73.020101
  21. Garner F. A., et al., J. Nucl. Mat. 123, 276, (2000) https://doi.org/10.1016/S0022-3115(99)00225-1
  22. A. Kohyamaet. al., J. Nucl. Mat. 138, 233, (1996) https://doi.org/10.1016/S0022-3115(96)00327-3
  23. Abe H., and Kuramoto E., J. Nucl. Mater. 209, 271 (1999) https://doi.org/10.1016/S0022-3115(98)00741-7
  24. P. Olsson, I. A. Abrikosov, L. Vitos, J. Wallenius, J. Nucl. Mat. 321, 84 (2003) https://doi.org/10.1016/S0022-3115(03)00207-1
  25. T.P.C. Klaver, R. Drautz, M. W. Finnis, Phys. Rev. B 74, 094435 (2006) https://doi.org/10.1103/PhysRevB.74.094435
  26. T. P. C. Klaver, P. Olsson, M. W. Finnis, Phys. Rev. B 76, 214110 (2007) https://doi.org/10.1103/PhysRevB.76.214110
  27. A. Froideval, R. Iglesias, M. Samaras, S. Schuppler, P. Nagel, D. Grolimund, M. Victoria, W. Hoffelner, Phys Rev Lett. 99, 237201 (2007) https://doi.org/10.1103/PhysRevLett.99.237201
  28. R. Iglesias, M. Samaras, A. C. Uldry, M. Victoria, W. Hoffelner, work in preparation
  29. U. K$\ddot{o}$bler, A. Hoser, R.M. Mueller, K. Fischer, Journal of Magnetism and Magnetic Materials 315 12(2007) https://doi.org/10.1016/j.jmmm.2007.02.056
  30. R. H. Heffner, E. D. Bauer, B. Chung, M. J. Fluss, W. Higemoto, T. U. Ito, D. E. MacLaughlin, L. A. Morales, G. D. Morris, K. Ohishi, J. L. Sarrao, L.Shu, Proc. of 5th Int. Symposium on ASR-WYP-2005-Advances in the Physics and Chemistry of Actinide Compounds-J. Phys. Soc. Jpn. 75, 14 (2006) https://doi.org/10.1143/JPSJS.75S.14
  31. M. Fluss, S. Mccall’ Talk presented at Fall MRS 2008, Symposium R, ‘Experimental Determination of Metal Fuel Point Defect Parameters’, www.mrs.org/s_mrs/doc.asp?CID =16988&DID=217327
  32. G. Martin, P. Bellon, R. Physique 9, 323 (2008) https://doi.org/10.1016/j.crhy.2007.11.006
  33. N. Soneda, T. Diaz de la Rubia, Phil. Mag. A 78, 995 (1998) https://doi.org/10.1080/01418619808239970
  34. M. Samaras, P.M. Derlet, H. Van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002) https://doi.org/10.1103/PhysRevLett.88.125505
  35. M. Samaras, PM. Derlet, H. Van Swygenhoven, M. Victoria, J. Nucl. Mater. 351, 47 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.030
  36. M. Samaras, W. Hoffelner and M. Victoria, J. of Nucl. Mater. 352, 50-56, (2006) https://doi.org/10.1016/j.jnucmat.2006.02.041
  37. M. Samaras, W. Hoffelner and M. Victoria, submitted to MRS proceedings (2008)
  38. C.S. Becquart, A. Souidi, C. Domain, M. Hou, L. Malerba, R.E. Stoller, J. Nucl. Mater. 351, 39 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.022
  39. C.S. Becquart, Nucl. Inst. Meth. Phys. B 228, 111 (2005) https://doi.org/10.1016/j.nimb.2004.10.030
  40. C.C. Fu, J. Dalla Torre, F. Willaime, J.-L. Bocquet, A. Barbu, Nature Mater. 4, 68 (2005) https://doi.org/10.1038/nmat1286
  41. C. Ortiz, M. J. Caturla, C. C. Fu, F. Willaime, Phys. Rev. B 75, 100102(R) (2007) https://doi.org/10.1103/PhysRevB.75.100102
  42. P. Erhart, et al.,, Phys Rev B 77, 134206 (2008) https://doi.org/10.1103/PhysRevB.77.134206
  43. R. G. Faulkner, Encyclopedia of Materials: Science and Technology, 829 (2008)
  44. N. Sakaguchi, S. Watanabe, H. Takahashi, R. G. Faulkner, J. Nucl. Mater. 329-333, 1166 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.268
  45. S. Watanabe, Y. Takamatsu, N. Sakaguchi, H. Takahashi, J. Nucl. Mater. 283-287 152 (2000) https://doi.org/10.1016/S0022-3115(00)00204-X
  46. Z. Lu, R.G. Faulkner, N. Sakaguchi, H. Kinoshita, H. Takahashi, P.E.J. Flewitt, J. Nucl. Mater. 329-333 1017 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.127
  47. A.D. Brailsford, R. Bullough, J. Nucl. Mater. 44, 121 (1972) https://doi.org/10.1016/0022-3115(72)90091-8
  48. A.D. Brailsford, J. Nucl. Mater. 118 303 (1983) https://doi.org/10.1016/0022-3115(83)90238-6
  49. M. Michael P. Surh, J.B. Sturgeon , W.G. Wolfer, J. Nucl. Mater. 328, 107 (2004) https://doi.org/10.1016/j.jnucmat.2004.03.005
  50. A A Semenov, C H Woo, Appl. Phys. A 69, 445 (1999) https://doi.org/10.1007/s003390051030
  51. A A Semenov, C H Woo, J. Nucl. Mater. 323, 192 (2003) https://doi.org/10.1016/j.jnucmat.2003.08.004
  52. C. C. Fu, F. Willaime, Phys. Rev. B 72, 064117 (2005) https://doi.org/10.1103/PhysRevB.72.064117
  53. R. Sch$\ddot{a}$ublin, Z.L. Chiu, J. Nucl. Mater. 362, 152 (2007) https://doi.org/10.1016/j.jnucmat.2007.01.187
  54. F. Gao, et al.,, J. of Nucl. Mater. 133, 351 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.015
  55. Osetsky Yu N. ., Mater. Res. Soc. Symp. Proc. 59, 527 (1998) https://doi.org/10.1557/PROC-527-59
  56. M. J. Caturla, C. J. Ortiz, J. of Nucl. Mater. 141, 362 (2007) https://doi.org/10.1016/j.jnucmat.2007.01.017
  57. B. Bak$\acute{o}$, D. Weygand, M. Samaras, J. Chen, M. Pouchon, P. Gumbsch, W. Hoffelner, Phil. Mag. A 87 3645 (2007) https://doi.org/10.1080/14786430701383085
  58. B. Bak$\acute{o}$, D. Weygand, M. Samaras, W. Hoffelner, and M. Zaiser, Phys. Rev. B. 78, 144104 (2008) https://doi.org/10.1103/PhysRevB.78.144104
  59. B. Bak$\acute{o}$, M. Zaiser, D. Weygand, M. Samaras, W. Hoffelner, J. Nucl. Mater., in press (2009)
  60. B. Bak$\acute{o}$, M. Samaras, D. Weygand, J. Chen, P. Gumbsch, W. Hoffelner J. Nucl. Mater., in press (2009)
  61. Fatigue at elevated temperatures, A. E. Carden, A. J. McEvJily, C. H. Wells, editors, ASTM Special Technical Publication, 520, AMERICAN SOCIETY FOR TESTING AND MATERIALS, (1973)
  62. J. Lemaitre, J.-L. Chaboche Eds., Mechanics of Solid Materials, Cambridge University Press ISBN 0521477581, 9780521477581 (1994)
  63. D. Cole et al, Sic Tech. Wld. Join. 5, 81 (2000)
  64. M. Law, W. Payten, K. Snowden, International Journal of Pressure Vessels and Piping 79, 847 (2002) https://doi.org/10.1016/S0308-0161(02)00100-X
  65. N. K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Corros. Sci. 50, 1701 (2008) https://doi.org/10.1016/j.corsci.2008.01.032
  66. W. Hoffelner, ASME tasks on New Generation Nuclear Plant (NGNP) 2008, unpublished
  67. M. Stan, J.C. Ramirez, P. Cristea, S.Y. Hu, C. Deoa, B.P. Uberuaga, S. Srivilliputhur, S.P. Rudin, J.M. Wills, Journal of Alloys and Compounds, 444-445, 415 (2007) https://doi.org/10.1016/j.jallcom.2007.01.102
  68. www.f-bridge.eu/; www.f-bridge.eu/index.php/Papers/FBridge-Publications.html
  69. L. Van Brutzel, P. Crocombette, MRS Proceedings 358, n$\textdegree$2-3, 209 (2006)
  70. L. Van Brutzel, E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008) https://doi.org/10.1016/j.jnucmat.2008.04.010
  71. Hj. Matzke, M. Kinoshita, J. Nucl. Mater. 247, 108 (1997) https://doi.org/10.1016/S0022-3115(97)00081-0
  72. G. Martin, S. Maillard, L. Van Brutzel, P. Garcia, B. Dorado, C. Valot, J. Nucl. Mater. (2009) https://doi.org/10.1016/j.jnucmat.2008.12.010
  73. G.E. Murch, Diff. Defect Data 32 9
  74. K. Govers, S. Lemehov, M. Hou, M. Verwerft , J. Nucl. Mater. 366 161 (2007) https://doi.org/10.1016/j.jnucmat.2006.12.070
  75. K. Govers, S. Lemehov, M. Hou, M. Verwerft, J. Nucl. Mater. 376 66 (2008) https://doi.org/10.1016/j.jnucmat.2008.01.023
  76. M. Iannuzzi, M. Krack, M. Zimmermann, M. Samaras, unpublished
  77. K. Govers, S. Lemehov, M. Verwerft, J. Nucl. Mater. 374, 461(2008) https://doi.org/10.1016/j.jnucmat.2007.10.005
  78. Y. Yun, O. Eriksson, P. M. Oppeneer, J. Nucl. Mater. accepted (2008) https://doi.org/10.1016/j.jnucmat.2008.10.036
  79. David C. Parfitt, Robin W. Grimes, J. Nucl. Mater. 381 216 (2008) https://doi.org/10.1016/j.jnucmat.2008.06.038
  80. P. Blair, A. Romano, Ch. Hellwig, R. Chawla, J. Nucl. Mater., 350, 232 (2006) https://doi.org/10.1016/j.jnucmat.2006.01.006
  81. P. Blair, thesis, http://library.epfl.ch/theses/?nr=4084
  82. L. Shuller, R. C. Ewing, U. Becker, Mater. Res. Soc. Symp. Proc. Vol. 985 0985-NN12-03 (2007)
  83. M. Katayama, J. Adachi, K. Kurosaki, M. Uno, S. Miwa, M. Osaka, K. Tanaka, S. Yamanaka, Mater. Res. Soc. Symp. Proc. Vol. 1043 1043-T09-06 (2008)
  84. W. Hoffelner, A. Froideval, M.A. Pouchon, J. Chen, M. Samaras, Metall. Mater. Trans. A, 10.1007/s11661-007- 9326-z
  85. www-ist.cea.fr/publicea/exl-doc/200700001902.doc
  86. A. Kohyama, GFR Steering Committee Meeting, Idaho May $21^{st}$, 2003
  87. B. D. Wirth, M.J. Caturia, T. Diaz de la Rubia, T. Khraishi, H. Zbib, Nucl. Instru. Meth. Phys. B 180, 23 (2001) https://doi.org/10.1016/S0168-583X(01)00392-5
  88. W. Hoffelner, M. Pouchon, J. Chen, TMS Letters Issue 3, 81 (2005)
  89. E. N. Campitelli, P. Spätig, R. Bonad$\acute{e}$, W. Hoffelner, M Victoria, J. Nucl. Mater. 335, 336 (2004) https://doi.org/10.1016/j.jnucmat.2004.07.052
  90. M. A. Pouchon, J. Chen, M. Döbeli, W. Hoffelner, J. Nucl. Mater. 352, 57 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.070
  91. A. Kohyama, Y. Katoh, L.L. Snead, R.H. Jones, www.iaea. org/programmes/ripc/physics/fec2000/pdf/ftp1_06.pdf
  92. B.D. Patterson, et al., Swiss Physical Society Newsletter, 23, 16 (2003)
  93. J. F. van der Veen, Synchrotron Radiation Instrumentation, 3-9 705, (2004)
  94. N. Gao, M. Samaras, P. M. Derlet, H. Van Swygenhoven, M. Victoria, W. Hoffelner, unpublished
  95. J. Chen, M.A. Pouchon, A. Kimura, P. Jung, W. Hoffelner, J. Nucl. Mater. accepted https://doi.org/10.1016/j.jnucmat.2008.12.081
  96. J. Chen, unpublished
  97. P. de Almeida, M. Victoria, Solid State Commun. 125 195 (2003) https://doi.org/10.1016/S0038-1098(02)00722-6
  98. C. Borca, et al, unpublished
  99. http://www.cscs.ch/

피인용 문헌

  1. Damage assessment in structural metallic materials for advanced nuclear plants vol.45, pp.9, 2010, https://doi.org/10.1007/s10853-010-4236-7
  2. Materials Databases and Knowledge Management for Advanced Nuclear Technologies vol.133, pp.1, 2011, https://doi.org/10.1115/1.4002262
  3. A Cluster Dynamics Model For Accumulation Of Helium In Tungsten Under Helium Ions And Neutron Irradiation vol.11, pp.05, 2012, https://doi.org/10.4208/cicp.030311.090611a
  4. AN IMPROVED CLUSTER DYNAMICS MODEL FOR HYDROGEN RETENTION IN TUNGSTEN vol.23, pp.06, 2012, https://doi.org/10.1142/S0129183112500428
  5. Effect of nanostructure on radiation tolerance and deuterium retention in tungsten vol.122, pp.4, 2017, https://doi.org/10.1063/1.4996096