DOI QR코드

DOI QR Code

Changes in Various Quality Characteristics of Short-ripened Salami During Storage at Chilled or Room Temperatures

단기숙성 살라미의 냉장 및 실온저장 중 품질 특성 변화

  • Published : 2009.02.28

Abstract

This study investigated the microbial contamination levels of raw meats used for short-ripened salami and changes in the microbial and physico-chemical properties of the product during storage at 10 and $25^{\circ}C$ for up to 120 days. The microbial counts of raw meats ranged between 2 and 4 Log CFU/g. Frozen-thawed sow meat showed higher total aerobe and Enterobacteriaceae counts than fresh chilled pork and pork back fat. Staphylococcus aureus was found in all raw materials except fresh chilled pork samples, and Clostridium perfringens was detected in a sample stored for 21 days at $25^{\circ}C$. The counts of total aerobes, lactic acid bacteria and Staphylococcus spp. decreased more rapidly at $25^{\circ}C$ than at $10^{\circ}C$ when the storage time was extended. The growth of Enterobacteriaceae, Pseudomonas spp., Clostridium spp., yeast, and mold were restricted to levels below 2 Log CFU/g during storage. The contents of salt, water, crude protein, crude fat, and ash of salami samples were 3.4, 33.4, 30.8, 32.7, and 4.3%, respectively, which were not affected by storage time or temperature. The pH value of the salami was initially 4.79 and increased to 5.02 and 5.26 after 120 days of storage at 10 and $25^{\circ}C$, respectively, whereas the water activity values decreased from an initial value of 0.91 to 0.90 and 0.88 after 120 days at 10 and $25^{\circ}C$, respectively. The TBA and VBN values increased slowly during storage. The redness value of the salami samples stored at $25^{\circ}C$ decreased more significantly than the samples stored at $10^{\circ}C$. With increased storage time, the values for the rheological characteristics of the salami in terms of hardness, brittleness, elasticity, cohesiveness, gumminess, and adhesiveness tended to decrease more remarkably at $25^{\circ}C$ than at $10^{\circ}C$. Based on sensory evaluation scores, it appears that short-ripened salami is no longer acceptable after 90 days at $10^{\circ}C$ and 30 days at $25^{\circ}C$.

본 연구는 살라미의 냉장 및 실온 저장 중 미생물의 변화 양상과 물리화학 및 관능학적 품질 변화를 조사하여 국내 위생기준에 적합 여부를 판단하고 살라미의 개별 위생기준을 마련하는데 기초 자료로 활용하고자 수행되었다. 살라미와 원료학적 미생물 오염 수준을 살펴보고 이 원료로 제조된 제품을 각각 10과 $25^{\circ}C$에 120일 동안 저장하면서 미생물, 물리 화학 및 관능학적 품질 변화를 조사하였다. 살라미 시료의 10과 $25^{\circ}C$ 저장 중 초발 총균수는 7.99 Log CFU/g이었으며 저장기간의 연장에 따라 변화하여 120일째에는 7.54 Log CFU/g으로 감소하였다. 유산균은 120일째 10과 $25^{\circ}C$에서 각각 7.57 Log CFU/g과 4.05 Log CFU/g으로 변화하여 Staphylococcus spp.와 함께 살라미의 주종균 임이 확인되었다. 기타 균종들은 두 온도에서 성장이 억제되는 경향을 보였다. $25^{\circ}C$ 저장 시료의 경우 유산균과 Staphylococcus spp.의 균수가 감소하는 경향을 보였다. 원료육의 미생물은 2-4 Log 수준이였으며, 냉동/해동육, 특히 늙은 암퇘지 돈육의 경우 총균 및 대장균의 오염이 심하였다. 원료육에서는 S. aureus가, 저장 중 육제품에서는 Clostridium perfringens가 발견되었다. 살라미 제품의 식염, 수분, 조단백, 조지방 및 회분 함량은 각각 약 3.4, 33.4, 30.8, 32.7 및 4.3% 수준이었으며 저장 기간과 온도에 따른 차이를 나타내지 않았다. 살라미 시료의 pH는 4.79에서 5.02($10^{\circ}C$)와 5.26($25^{\circ}C$)로 저장 기간 중 각각 증가하는 대신 수분활성도는 0.91에서 0.90($10^{\circ}C$)와 0.88($25^{\circ}C$)로 각각 감소하는 경향을 보였다. TBA값과 VBN값은 저장 기간에 따라 점차적으로 증가하였으나 $10^{\circ}C$ 저장 살라미의 VBN값은 120일째 18.90 mg%로 부패 단계인 20 mg%까지 도달하지는 않았다. 육색 측정 결과 $25^{\circ}C$ 시료는 $10^{\circ}C$ 시료에서보다 'a'값(적색도)이 45일째부터 뚜렷하게 감소되었다. 저장 기간이 연장될수록 경도, 부서짐성, 탄성, 응집성, 검성 및 점착성 등이 저하되는 조직감을 보였으며 $10^{\circ}C$ 시료에서 보다 $25^{\circ}C$의 시료에서 더 빨리 연화되었다. 관능검사 결과에 근거한 살라미제품의 저자 수명은 10과 $25^{\circ}C$에서 저장할 경우 각각 최장 90일과 30일로 추정되었다.

Keywords

References

  1. Aguirrezabal, M. M., Mateo, J., Dominguez, M. C., and Zumalacarregui, J. M. (2000) The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Sci. 54, 77-81 https://doi.org/10.1016/S0309-1740(99)00074-1
  2. Ansorena, D. and Astiasaran, I. (2004) Effect of storage and packaging on fatty acid composition and oxidation in dry fermented sausages made with added olive oil and antioxidants. Meat Sci. 67, 237-244 https://doi.org/10.1016/j.meatsci.2003.10.011
  3. AOAC (1990) Official methods of analysis. 15th ed., Association of Official Analytical Chemists, Washington, DC, pp. 25-36
  4. Aurand, L. W., Woods, A. E., and Wells, M. R. (1987) Food composition and analysis. An AVI Book Publ., Van Nostrand Co., NY, pp. 608
  5. Barbuti, S. (1998) Utilizzo del Microbial challage testing per la validazione dei processi di trasfromazione degli insaccati stagionati. Proceed. of La sicurezzamicrobiologica degli alimenti conservati, 12 November 1998, Parma, Italy, pp. 61-65
  6. Barbuti, S. and Parolari, G. (2002) Validation of manufacturing process to control pathogenic bacteria in typical dry fermented products. Meat Sci. 62, 323-329 https://doi.org/10.1016/S0309-1740(02)00124-9
  7. Berdague, J. L., Monteil, P., Montel, M. C., and Talon, R. (1993) Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Sci. 35, 275-287 https://doi.org/10.1016/0309-1740(93)90033-E
  8. Centers for Disease Control (1995) Escerichia coli O157:H7 outbreak linked to commercially distributed dry-cured salami Washington and California. Morb. Mortal Wkly. Rep. 44, 157-160
  9. Dominguez, M. C. and Zumalacarregui, M. C. (1991) Lipolytic and oxidative changes in "chorizo" during ripening. Meat Sci. 29, 99-207 https://doi.org/10.1016/0309-1740(91)90057-W
  10. Goepfer, J. M. and Chung, K. C. (1970) Behavior of Salmonella during the manufacturing and storage of a fermented sausage product. J. Milk Food Microbiol. 33, 185-191
  11. Gossling, U., Hopke, H. U., and Gerigk, K. (1982) Einflu${\ss}$ der Vakuumverpackung auf Qualit$\"{a}$t und Haltbarkeit von Rohw$\"{u}$rsten. Fleischwirtschaft 62, 1090-1096
  12. Gokalp, H. Y. (1986) Residual $NO_{3^-} $, $NO_{2^-} $, and TBA values of Turkish soudjouk manufactured by adding different starter cultures and using different ripening temperatures. J. Food Technol. 21, 615-625 https://doi.org/10.1111/j.1365-2621.1986.tb00399.x
  13. Hammes, W. P., Bantleon, A., and Min, S. (1990) Lactic acid bacteria in meat fermentaion. FEMS Microbiol. Rev. 87, 165-174 https://doi.org/10.1111/j.1574-6968.1990.tb04886.x
  14. Han, K. H., Park, J. K., and Lee, C. H. (2006) Manufacture and product evaluation of fermented sausages innoculated with freeze-dried Kimchi powder and starter culture (Lactobacillus plantarum). Korean J. Food Sci. Ani. Resour. 26, 486-490
  15. Harmsa, C., Fuhrmannb, H., Nowakc, B., Wenzelc, S., and Sallmann, H. P. (2003) Effect of dietary vitamin E supplementation of the shelf life of cured pork sausage. Meat Sci. 63, 101-105 https://doi.org/10.1016/S0309-1740(02)00061-X
  16. Incze, K. (1998) Dry fermented sausages. Meat Sci. 49, 169-177 https://doi.org/10.1016/S0309-1740(98)90046-8
  17. Kim, Y. J., Lee, H. C., Park, S. Y., Oh, S. J., and Jin, K. B. (2008) Utilization of probiotic starter cultures for the manufacture of low-fat functional fermented sausages. Korean J. Food Sci. Ani. Resour. 28, 51-58 https://doi.org/10.5851/kosfa.2008.28.1.51
  18. Kim, C. H., Ko, M. S., Lee, K. H., Park, W. M., and Yoo, I. J. (1998a) Changes of palatability traits of mold fermented sausages during ripening. Korean J. Food Sci. Ani. Resour. 18, 57-62
  19. Kim, C. H., Ko, M. S., Lee, K. H., Park, S. J., Kim, J. H., Lim, D. S., Park, W. M., Yoo, I. J., and Lee, C. H. (1998b) Volatile flavor compounds and sensory evaluation ofmold fermented sausages. Korean J. Food Sci. Ani. Resour. 18, 255-260
  20. Kunz, B. and Lee, J. Y. (2003) Production and microbiological characteristics of fermented sausages. Korean J. Food Sci. Ani. Resour. 23, 361-375
  21. Lahti, E., Johansson, T., Hill, P., and Nurmi, E. (2000) Survival and detection of Escherichia coli O157:H7 and Listeria monocytogenes during the manufacture of dry sausage using two different starter cultures. Food Microbiol. 18, 75-85 https://doi.org/10.1006/fmic.2000.0373
  22. Lee, K. T., Lee, Y. K., Lee, J. P., Lee, J. W., Son, S. K., Choi, S. H., and Lee, S. B. (2007) Determination of the prevalence of pathogenic bacteria and the changes in microbiological growth pattern of cured and short-ripened raw ham during storage. Korean J. Food Sci. Ani. Resour. 27, 127-131 https://doi.org/10.5851/kosfa.2007.27.1.127
  23. Lee, S. H., Seong, S. K., Kim, S. M., and Choi, W. J. (2001) Physiological characteristics of lactic acid bacteria isolated from Kimchi to select starter of fermented sausage. J. Anim. Sci. Technol. 43, 393-400
  24. Leistner, L. (1995) Stable and safe fermented sausages world-wide. In: Fermented Meats. Campbell-Platt, G. and Cook, P. E. (eds.), Blackie Academic & Professional, Glasgow, pp. 160-175
  25. Lim, D. G. and Lee, M. (2007) Combination effect of packaging and electron beam irradiation on quality traits of fermented sausages during storage. J. Anim. Sci. Technol. 49, 539-548 https://doi.org/10.5187/JAST.2007.49.4.539
  26. Linke, H. (1985) Qualit$\"{a}$tsnormen f$\"{u}$r Rohschinken und Rohw$\"{u}$rsten. In: Mikrobiologie und Qualit$\"{a}$t von Rohwurst und Rohschinken. Kulmbacher Reihe Band 5, Bundesanstalt f$\"{u}$r Fleischforschung, Kulmbach, pp. 30-59
  27. Montel, M. C., Reitz, J., Talon, R., Berdague, J. L., and Rousset, A. S. (1996) Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiol. 13, 489-499 https://doi.org/10.1006/fmic.1996.0056
  28. Park, W. M., Choi, W. H., Yoo, I. J., Ji, J. R., and Jeon, K. H. (1997) Effects of mixed starter cultures on the physicochemical properties of fermented sausages. Korean J. Food Sci. Ani. Resour. 17, 91-99
  29. Pontello, M., Sodano, L. Nastasi, A., Mammina, C. Astuti, M., Domenichini, M., Gerosa, E., and Montagna, A. (1998) A community-based outbreak of Salmonella enterica sero-type typhimurium associated with salami consumption in Northern Italy. Epidemiol. Infection 120, 209-214 https://doi.org/10.1017/S095026889800870X
  30. Prandl, O., Fischer, A., Schmidhofer, T., and Sinell, H, J. (1988) Fleisch Technologie und Hygiene der Gewinnung und Verarbeitung. Verlag Eugen Ulmer, Stuttgart, pp. 518-549
  31. Rubio, B., Martinez, B., M Dolores, G.C., Rovira, J., and Jaime, I. (2008) Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichon manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Sci. 80, 1182-1187 https://doi.org/10.1016/j.meatsci.2008.05.012
  32. SAS (2001) SAS User's Guide. SAS Institute, Gary, NC, USA
  33. Tilden, J. Jr., Young, W., McNamara, A., Custer, C., Bosesel, B., Lambert-Fair, M. A., Majkowski, J., Vugia, D., Werner, S. B., Hollingsworth, J., and Morris, J. G. (1996) A new route of transmission for E. coli: Infection from dry fermented salami. Am. J. Public Health 86, 1142-1145 https://doi.org/10.2105/AJPH.86.8_Pt_1.1142
  34. Wirth, F., Leistner, L., and Rodel, W. (1975) Richtwerte der Fleischtechnologie, Verlagshaus Sponholz, Frankfurt am Main, pp. 78-91
  35. Witte, V. C., Krause. G. F., and Bailey, M. E. (1970) A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35, 582-585 https://doi.org/10.1111/j.1365-2621.1970.tb04815.x
  36. 高坂和久 (1975) 畜産物の鮮度保持と測定. 食品工業 18, pp. 105
  37. 국립수의과학검역원 (2007) 축산물의 가공기준 및 성분규격. 국립수의과학검역원고시 제2007-20호(2007. 6. 5)

Cited by

  1. Effects of fat replacement with a mixture of collagen and dietary fibre on small calibre fermented sausages vol.51, pp.1, 2016, https://doi.org/10.1111/ijfs.12960
  2. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage vol.93, pp.3, 2013, https://doi.org/10.1016/j.meatsci.2012.11.006
  3. Effect of GdL Addition on Physico-chemical Properties of Fermented Sausages during Ripening vol.35, pp.3, 2015, https://doi.org/10.5851/kosfa.2015.35.3.322
  4. 카르노스산에 의한 화이트소시지의 항산화 및 항균 효과 vol.21, pp.2, 2009, https://doi.org/10.11625/kjoa.2013.21.2.219
  5. Effect of Rice Bran and Wheat Fibers on Microbiological and Physicochemical Properties of Fermented Sausages during Ripening and Storage vol.38, pp.2, 2009, https://doi.org/10.5851/kosfa.2018.38.2.302