Research on the PAPR Reduction Method using Selection of Extra Code Set in PB/MC-CDMA System

PB/MC-CDMA 시스템에서 여분의 코드집합을 이용한 PAPR 감쇄기법에 관한 연구

  • 이규진 (경희대학교 전자.전파공학과 대학원) ;
  • 이동준 ((주)모나드 기술연구소) ;
  • 이계산 (경희대학교 전자.전파공학과) ;
  • 김진영 (광운대학교 전파공학과)
  • Published : 2009.02.28

Abstract

The PB/MC-CDMA(Partial Block Multi Carrier Code Division Multilple Access) system can improve the performance by reducing the ICI(Inter-Code Interference) between users. Also, this system can achieve the frequency diversity gain by avoiding ISI(Inter Symbol Interference). Therefore, the performance of PB/MC-CDMA system is better than that of conventional MC-CDMA(Multi Carrier Code Division Multiple Access) system. However, similarly to other multi-carrier systems, it still has a PAPR(Peak to Average Power Ratio) issue. In this paper, we propose a peak power reduction technique involving optimized spreading code selection without side information for the PB/MC-CDMA. The PB/MC-CDMA system in each block of units reuses the code so the extra code will be remained. This extra code is divided into several groups to calculate the PAPR and solving the PAPR problem by transferring the selected code which has minimum peak power.

PB/MC-CDMA(Partial Block Multi Carrier Code Division Multilple Access) 시스템은 사용자간의 코드 간 간섭을 줄임으로써 성능을 향상 시키는 시스템이다. 또한, 이 시스템은 심볼 간 간섭을 피하면서 주파수 다이버시티 이득을 얻을 수 있어 MC-CDMA(Multi Carrier Code Division Multiple Access) 시스템보다 향상된 성능을 보여준다. 그러나, 다중캐리어를 사용함으로써 PAPR 문제가 발생하여 시스템의 성능을 저하 시킨다. 이 논문에서는, PB/MC-CDMA 시스템에서 추가적인 정보 없이 여분의 확산 코드를 이용하여 최적화된 확산코드를 선택함으로써, 피크전력을 줄이는 방법을 제안한다. PB/MC-CDMA 시스템은 각 블록 단위로 확산 코드를 재사용함으로써, 여분의 코드가 남게 된다. 이러한 여분의 코드를 여러 개의 그룹으로 나누어 PAPR(Peak to Average Power Ratio)을 계산하고, 피크전력이 최소가 되는 코드를 선택하여 전송함으로써 PAPR 문제를 해결할 수 있는 방법이다.

Keywords

References

  1. S. Hara and R. Prasad, "Design and performance of multicarrier CDMA system in frequencyselective Rayleigh fading channels," IEEE Trans. Vehicular Technology, vol. 48, no. 4, pp. 1584-1595, Sept. 1999. https://doi.org/10.1109/25.790535
  2. S. Hara, R. Prasad, "Overview of Multicarrier CDMA," IEEE Commun. Magaizne, vol. 35, no. 12, pp. 126-133, Dec. 1997.
  3. T. Fujii, Y. Kamiya, and Y. Suzuki, "Multi-stage RLS subcarrier combining method for uplink quasisynchronous MC-CDMA," IEEE Trans. Vehicular Technology, vol. 56, no. 6, pp. 3739-3748, Nov. 2007. https://doi.org/10.1109/TVT.2007.904538
  4. 이규진, 이계산, 김진영, "Multi-rate MC-CDMA 시스템에서의 코드간 간섭과 주파수 다이버시티와의 관계에 대한 연구," 한국ITS학회논문지, 제7권, 제5호, pp. 131-138, 2008. 10.
  5. K. J. Lee and K . S. Lee, "Clustered OFDMA in the multi-path fading Channel," Lecture notes in Computer Science, vol. 3984, pp. 708-716, May 2006.
  6. M. A. Ullah and K. S. Lee. "BER performance comparison between FHPB/MC-CDMA and MCCDMA under multi-path Rayleigh fading channels," Proc. Asia-Pacific Conf. Communications, pp. 1-5, Aug. 2006.
  7. K. J. Lee and K. S. Lee, "Adaptive resource allocation for the PB/MC-CDMA system in frequency selective fading channels," IEICE Trans. Commun., vol. E91-B, no. 12, pp. 4042-4045, Dec. 2008. https://doi.org/10.1093/ietcom/e91-b.12.4042
  8. R. O’Neill and L. B. Lopes, "Envelope variations and spectral splatter in clipped multicarrier signals," Proc. IEEE PIMRC, vol. 1, pp. 71-75, Sept. 1995.
  9. J. Armstrong, "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering," IEE Electron. Lett., vol. 38, no. 8, pp. 246-247, Feb. 2002. https://doi.org/10.1049/el:20020175
  10. X. Li and L. J. Cimini, Jr., "Effect of clipping and filtering on the performance of OFDM," IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998. https://doi.org/10.1109/4234.673657
  11. A. E. Jones, T. A. Wilkinson, and S. K. Barton, "Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme," IEE Electron. Lett., vol. 30, no. 22, pp. 2098-2099, Dec. 1994. https://doi.org/10.1049/el:19941423
  12. B. M. Popovic, "Synthesis of power efficient multitone signals with flat amplitude spectrum," IEEE Trans. Commun., vol. 39, no. 7, pp. 1031-1033, July 1991. https://doi.org/10.1109/26.87205
  13. R. V. Nee, "OFDM codes for peak-to-mean power control and error correction," Proc. IEEE GLOBECOM, pp. 740-744, Nov. 1996.
  14. T. Fujii and M. Nakagawa, "Peak power reduction for MC-CDMA using cluster assigned code selection," IEICE Trans. Commun., vol. E86-B, no. 9, pp. 2637-2647, Sept. 2003.
  15. R. W. Bauml, R. F. H. Fisher, and J. B. Huber, "Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping," IEE Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996. https://doi.org/10.1049/el:19961384
  16. S. H. Han and J. H. Lee, "Modified selected mapping technique for PAPR reduction of coded OFDM signal," IEEE Trans. Broadcasting, vol. 50, no. 3, pp. 335-341, Sept. 2004. https://doi.org/10.1109/TBC.2004.834200
  17. M. C. Lin, Y. C. Tasi, and C. J. Yang, "Selective-mapping type peak power reduction technique for turbo coded OFDM," Proc. IEEE Wireless Network, Communications and Mobile Computing, vol. 1, pp. 119-122, June 2005.
  18. Y. Xin and I. J. Fair, "Peak-to-average power ratio reduction of an OFDM signal using guided scrambling coding," Proc. IEEE GLOBECOM, vol. 4, pp. 2390-2394, Dec. 2003.
  19. R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
  20. P. Dent, G. E. Bottomly, and T. Croft, "Jakes fading model revisited," IEE Electron. Lett., vol. 29, no. 13, pp. 1162-1163, June 1993. https://doi.org/10.1049/el:19930777