IEEE 802.16j 멀티홉 릴레이 네트워크를 위한 통합 자원 할당-라우팅 기법

A Joint Resource Allocation and Routing Scheme for the IEEE 802.16j Multi-hop Relay Networks

  • 이경주 (광운대학교 컴퓨터공학과) ;
  • 이혁준 (광운대학교 컴퓨터공학과)
  • 발행 : 2009.02.28

초록

기지국과 이동 단말 간의 경로 설정, 즉 라우팅은 멀티홉 셀룰러 시스템의 핵심 기술 중 하나이다. 또한, 멀티홉 셀룰러 시스템에서 기지국과 중계기들이 각 셀의 자원을 공유하므로, 전체 시스템의 가용 무선 자원을 최대한 이용할 수 있는 자원 할당 기법이 필요하다. 본 논문에서는 OFDMA 기반 멀티홉 셀룰러 시스템을 위한 통합 자원할당-라우팅 기법을 제안한다. 제안하는 기법은 전체 시스템의 하향 링크 처리율을 최대화하기 위한 통합 자원 할당-라우팅 문제를 MMKP 기반 휴리스틱 알고리즘을 이용하여 근사 해를 구한다. 실험 결과는 제안하는 기법이 시스템의 하향 링크 처리율 측면에서 링크 품질 기반 라우팅 기법보다 높은 성능을 나타내며, 최적 해를 도출하는 기법에 근접한 성능을 나타냄을 보인다.

Routing (or path selection) is one of the key issues of multi-hop relay networks such as the IEEE 802.16j. Moreover, the allocation of appropriate resource such as bandwidth should not only be made in accordance with the paths selected, but the utilization of radio resource of an entire cell should also be maximized. Due to this interdependency between the problems of resource allocation and routing, it is desired these two problems are addressed simultaneously. In this paper, we propose a joint resource allocation and routing scheme for an OFDMA-based multi-hop cellular system. This scheme uses a polynomial time heuristic algorithm called Multi-Dimensional Multi-choice Knapsack Problem (MMKP) in order to find an approximate solution maximizing the total downlink throughput. In the simulation results, we show that the proposed scheme finds a sub-optimal solution which is superior to a link quality-based routing scheme, but slightly worse than the optimal solution.

키워드

참고문헌

  1. Y. D. Lin and Y. C. Hsu, "Multihop cellular: a new architecture for wireless communications," IEEE INFOCOM, vol. 3, pp. 1273-1282, Mar. 2000.
  2. H. Wu, C. Qiao, S. De, and O. Tonguz, "Integrated cellular and ad hoc relaying systems: iCAR," IEEE J. Selected Areas in Communications, vol. 19, no. 10, pp. 2105-21, Oct. 2001. https://doi.org/10.1109/49.957326
  3. 3GPP TS 36.300 v8.4.0, "Evolved Universal Terrestrial Radio Access(E-UTRA) and Evolved Universal Terrestrial Radio Access Network(EUTRAN) Overall Description; Stage 2," Mar. 2008.
  4. IEEE 802.16j MMR, "Amendment to IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Multihop Relay Specification."
  5. IEEE 802.16 Task Group m (TGm), "Air Interface for Fixed and Mobile Broadband Wireless Access Systems-Advanced Air Interface," http://www.wirelessman. org/tgm/index.html
  6. V. Streng, H. Yanikomeroglu and D. Falconer, "Coverage enhancement through two-hop relaying in cellular radio systems," IEEE WCNC, vol. 2, pp. 881- 885, 2002.
  7. T. J. Harrold and A. R. Nix, "Intelligent relaying for future personal communications systems," IEE Colloquium Capacity and Range Enhancement Techniques for 3G. 2000.
  8. T. S. Rouse, S. McLaughlin, and H. Haas, "Coverage-capacity analysis of opportunity driven multiple access (ODMA) in UTRA TDD," IEE 3G, pp. 252-256, Mar. 2001.
  9. Y. D. Lin and Y. C. Hsu, "Base-centric routing protocol for multihop cellular networks," Proc. IEEE GLOBECOM, vol. 1, pp. 158-162, Nov. 2002.
  10. M. Shabany, E. S. Sousa, "Joint rate allocation and routing scheme in multihop cellular CDMA networks," Proc. 9th IEEE Symp. Computers and Communications, vol. 1, pp. 442-447, July 2004.
  11. M. Moser, D. P. Jokanovic, and N. Shiratori, "An algorithm for the multidimensional multiple-choice knapsack problem," IEICE Trans. Fundamentals, vol. 80, no. 3, pp. 582-589, Mar. 1997.